- given analysis.

Study	Total Distinct Semi-tryptic Peptide ID	% Precursor Area	% To Peptid
CPTAC3 A TMT (25, 2D)	78,797	9.23%	16.8
CPTAC3 B TMT (16, 2D)	83,803	7.87%	19.5
CPTAC3 C TMT (23, 2D)	44,783	7.53%	12.2
CPTAC2 A TMT (17, 2D)	65,816	4.26%	11.9
CPTAC2 B iTRAQ (37, 2D)	68,506	4.75%	10.2
NCI-7 TMT (1, 2D)	14,584	18.04%	27.1
Jurkat (1, 1D)	113	0.57%	0.3
CompRef (1, 1D)	368	1.59%	1.3

Trypsin – a Tired Workhorse? The Selectivity of Atypical Cleavages by Trypsin Meghan C. Burke, Yuxue Liang, Stephen E. Stein

National Institute of Standards and Technology, Gaithersburg, MD

Introduction

• Results show that semi-tryptic peptide formation, distinct from in-source fragmentation, contributes to sample-specific variation in multiplexed analyses. • Here, we perform in-depth characterization of both the variability and selectivity of atypical tryptic cleavage sites across more than 120 LC-MS/MS analyses. • Although semi-tryptic peptides are generally lower in abundance than the fully tryptic form, they are found to comprise a significant fraction of the total peptide spectral matches (PSMs) thereby reducing the dynamic range of a

Semi-tryptic Cleavage Site Distribution from Complex Samples Is Similar to Tryptic Digest of Pure Protein

Study	Total Peptide Ions	Total Distinct Peptide IDs	% Prec. Area (Rel. to Tryptic)	% Total Peptide Ions (Rel. to Tryptic)
HSA 45min	71	44	0.19%	4.92%
HSA 2hr	85	58	0.19%	5.61%
HSA 6hr	95	63	0.53%	6.77%
HSA 18hr	108	81	1.01%	7.35%
HSA 48hr	243	127	1.79%	11.74%

Table 2: Summarizes the total distinct HSA-derived in-solution semi tryptic peptide identifications across multiple digestion times (45 min, 2 hr, 6 hr, 18 hr and 48 hr) as well as percent of precursor area and total peptide ions, relative to fully tryptic identifications.

sequence.

Conclusions

- The time-course study illustrates that trypsin does cleave C-terminal to amino acids other than Lys and Arg, albeit at a slower rate.
- The distribution amino acids cleaved by trypsin, for in-solution semitryptic peptides, from a time-course study using HSA is similar to that obtained from complex human samples.
- This suggests that trypsin may contribute to the semi-tryptic peptides, and the associated variation, identified in in-depth proteomic studies.

