Writing R Extensions

Version 4.5.0 (2025-04-11)

R Core Team

This manual is for R, version 4.5.0 (2025-04-11).
Copyright (© 1999-2025 R Core Team

Permission is granted to make and distribute verbatim copies of this manual provided
the copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under
the conditions for verbatim copying, provided that the entire resulting derived work
is distributed under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions, except that this permiss-
ion notice may be stated in a translation approved by the R Core Team.

Table of Contents

Acknowledgements........ 1
1 Creating R packages 2
1.1 Package Structure. 3
1.1.1 The DESCRIPTION fil€ottt e ettt 4
11,2 LACEDSING . o oottt e 8
1.1.3 Package Dependencies.o e 10
1.1.3.1 Suggested packages.ttt 12

1.1.4 The INDEX file . .ottt e e e e e 13
1.1.5 Package subdirectories 13
1.1.6 Data in packages.o 18
1.1.7 Non-R scripts in packagescooiuiii i e 19
1.1.8 Specifying URLS e e 20
1.2 Configure and Cleanupt 20
1.2.1 USING MaK@VATS . . oottt ettt ettt e et e e e e et 25
1.2.1.1 OpenMP Supporto e 28
1.2.1.2 Using pthreads.o e 30
1.2.1.3 Compiling in sub-directories. ..., 31

1.2.2 Configure example 32
1.2.3 Using modern Fortran code i 33
1.2.4 Using CH4 COde. vt e 34
1.2.5 O standards.o e 36
1.2.6 USING CMAKE . . .t o vttt et et e e 37
1.3 Checking and building packagesoo i 39
1.3.1 ChecKing packagesttt e 40
1.3.2 Building package tarballs. 43
1.3.3 Building binary packages. 44
1.4 Writing package vignettes.o i 45
1.4.1 Encodings and vignettes ... 47
1.4.2 Non-Sweave VIgNEttesttt 48
1.5 Package namespacesttt 49
1.5.1 Specifying imports and eXportS.ttt 49
1.5.2 Registering S3 methods i 50
1.5.3 Load hoOKSt 51
1.5.4 useDYnLAb o1
1.5.5 AN eXAmMPIe. . oot 53
1.5.6 Namespaces with S4 classes and methods.................... 54
1.6 Writing portable packages. 55
1.6.1 PDF 126 ..o it 65
1.6.2 Check tImingoo i e 66
1.6.3 Encoding iSSUESottt e 66
1.6.4 Portable C and CH+ codeooiuinii i 67
1.6.4.1 Common SYmMDbOLSot e 74
1.6.4.2 G LT ISSUES « - e ettt ettt e e e e e e 74
1.6.4.3 C23 Changesottt e 75

1.6.5 Portable Fortran code........... i 75
1.6.6 Binary distribution i 77

1.7 DiagnostiC MESSAZESttt ettt e 78

ii

1.8 Internationalization 79
1.8.1 C-level TNESSAZES . . . v vttt ettt et e e e e 79
1.8.2 R MESSAZES - ..ottt 79
1.8.3 Preparing translations i 80

1.9 CITATION fIles . ..ottt e e e e e 80

110 Package ByDes - .o v vttt e 81
1.10.1 Fromtend e 81

0 T 1 T T 81

Writing R documentation files............................ ... 83

2.1 Rd format 83
2.1.1 Documenting functions. i 84
2.1.2 Documenting data Sets..........coouuiiiiiii e 88
2.1.3 Documenting S4 classes and methods............ ... i 89
2.1.4 Documenting packagesot 90

2.2 SECHIOMINE .« ottt ettt e e e e 90

2.3 Marking teXt .« oot 91

2.4 Lists and tables. 93

2.5 CTOSS-TEIEIEIICES vttt ettt et e e et e e e e e 93

2.6 Mathematics.o e 94

D A S ¥ = 95

2.8 TRSETtIONS . ¢ oo e 95

2.9 IAICES . .ot e 96

2.10 Platform-specific documentationieuiitnnii i 96

2.11 Conditional teXt e 96

2.12 DynamiC PAZES . .« v vett ettt et e 97

2.13 User-defined MAaCTOSttt e e 98

2,14 ENCOAING . ..ot ot et 99

2.15 Processing documentation files........ ... 99

2.16 Editing Rd files.o 100

Tidying and profiling Rcode............................... 101

3.1 Tidying R code. . ..o 101

3.2 Profiling R code for speed 101

3.3 Profiling R code for memory use 103
3.3.1 Memory statistics from Rprof 103
3.3.2 Tracking memory allocations........... ..o 104
3.3.3 Tracing copies of an object 104

3.4 Profiling compiled code......... e 104
3.4.1 Profiling on Linux 105

AL L perf 105
3.4.1.2 oprofile and operf i 105
3413 SPTOL . 107
3.4.2 Profiling on macOS 107

3.4.3 Profiling on Windows 107

iii

4 Debugging............. 108
4.1 BrOWSIIE . o oottt 108
4.2 Debugging R code 109
4.3 Checking MemOTy ACCESS« vttt et ettt ettt e 112

4.3.1 USING GCEOTTUTE ...ttt et e e e 113
4.3.2 Using Valgrind. 113
4.3.3 Using the Address Sanitizer....... ..., 115
4.3.3.1 Using the Leak Sanitizer i i 116

4.3.4 Using the Undefined Behaviour Sanitizer.............o .. 117
4.3.5 Other analyses with ‘clang’ e 119
4.3.6 Other analyses with ‘gee’ 119
4.3.7 Using ‘Dr. Memory’ e 119
4.3.8 Fortran array bounds checking 119
4.4 Debugging compiled code 119
4.4.1 Finding entry points in dynamically loaded code 121
4.4.2 Inspecting R objects when debugging L. 121
4.4.3 Debugging on macOS 123
4.5 Using Link-time Optimization i e 124

5 System and foreign language interfaces.................... 126
5.1 Operating SYyStEIN ACCESS . . .« vttt ettt ettt e 126
5.2 Interface functions .C and .Fortran..............coiuiiiiiiiiiiiiniiiiene.. 126
5.3 dyn.load and dyn.unload............oiuiiiiiiiii 128
5.4 Registering native Toutines. 129

5.4.1 Speed considerationst 132
5.4.2 Example: converting a package to use registration............... 133
5.4.3 Linking to native routines in other packages........................, 136
5.5 Creating shared objects. 137
5.6 Interfacing CH4 code e 138
5.6.1 External CH+ code. e 140
5.7 Fortran I/O ... o 141
5.8 Linking to other packages.........c... i 141
5.8.1 Unix-alikes e 141
0.8.2 WINAOWS . .ottt t ettt e e 142
5.9 Handling R objects in C 143
5.9.1 Handling the effects of garbage collection............o ... 144
5.9.2 Allocating SEOTAGE . .« o . v vttt ettt e et e 146
5.9.3 Details of R types. ..o 147
5.9.4 ABETIDUbES . . o 148
D.9.0 ClaSSES « o ittt 150
D.9.6 S4 0bJeCts ..ot 150
59.9.7 Handling Lists. 150
5.9.8 Handling character data i 151
5.9.9 Working with closures i 151
5.9.10 Finding and setting variables 152
5.9.11 Some convenience functions............ ..., 152
5.9.11.1 Semi-internal convenience functions 154
5.9.12 Named objects and COPYINGuutiinii i e 154
5.10 Interface functions .Call and .Externalcuiiuuiiiiiiiinennneennn. 155
5.10.1 Calling .Call.ttt e e 156

5.10.2 Calling .Externalottt 156

v

5.10.3 Missing and special values o i 158
5.11 Evaluating R expressions from C.......... . . i 158
5111 Zero-findingottt 160
5.11.2 Calculating numerical derivatives i 161
5.12 Parsing R code from C ... 164
5.12.1 Accessing Source referencesottt 165
5.13 External pointers and weak references............. ... i 166
5.13.1 An example 167
5.14 Vector accessor functionsoo i e 168
5.15 Character encoding iSSUES.ttt e e 168
5.16 Writing compact-representation-friendly code i 169
The R API: entry points for Ccode....................... 171
6.1 Memory allocation. i e 172
6.1.1 Transient storage allocation.......... i i 172
6.1.2 User-controlled memoryo 173
6.2 Error signalingo i 173
6.2.1 Error signaling from Fortran......... i 174
6.3 Random number generation........... ... 174
6.3.1 Random-number generation from Fortran 174
6.4 Missing and IEEE special values. 175
6.0 Printing e 176
6.5.1 Printing from Fortran....... 176
6.6 Calling C from Fortran and vice VEISa..............ouiuuiieiiieeiiiieenane.n. 177
6.6.1 Fortran character strings.......... ..o 178
6.6.2 Fortran LOGICAL e e 180
6.6.3 Passing functions 180
6.7 Numerical analysis subroutines........... ... i i 181
6.7.1 Distribution functions.t e 181
6.7.2 Mathematical functionso 183
6.7.3 Numerical Utilities. e e 183
6.7.4 Mathematical constants.......... ... i 185
6.8 OPUIMIZALION .« o oottt et e et et e e e e 186
6.9 Integrationoouiiii i 187
6.10 Utility functions. e 188
6.11 Re-encoding. e 190
6.12 Condition handling and cleanup code o i i i 190
6.13 AllOWING INEEITUDPES . vttt et e ettt e e et e et e e e 192
6.14 C stack checking.o 192
6.15 Custom serialization input and output i i 192
6.16 Platform and version information.......... i 193
6.17 Inlining C functions e e 194
6.18 Controlling visibility 194
6.19 Using these functions in your own C code...........cooiiiiiiiiiiiiiiiin... 195
6.20 Organization of header files. 195
6.21 Moving into C API compliance i 196
6.21.1 Some API replacements for non-API entry points 197
6.21.2 Creating environmentsttt e 198
6.21.3 Creating call eXpressions.t 198
6.21.4 Creating ClOSUIESttt e e e e 198

6.21.5 Querying CHARSXP €ncoding.cuunuuiienit it 198

6.21.6 Working with attributes 199
6.21.7 Working variable bindings o i 199
6.21.8 Some baCKPOTtS. . ..ottt e 200

7 Generic functions and methods....................... 201
7.1 Adding new GeneriCsttt e 202

8 Linking GUIs and other front-ends to R................... 203
8.1 Embedding R under Unix-alikes......... ... 203
8.1.1 Compiling against the R library.......... .. . i i i 205

8.1.2 Setting R callbacks ... 206

8.1.3 Registering symbols. ... i 209

8.1.4 Meshing event 100pso 209

8.1.5 Threading ISSUESottt 210

8.2 Embedding R under Windows e 210
8.2.1 Using (D)COM ... e 210

8.2.2 Calling R.d1L directlyovuuiinii 211

8.2.3 Finding R_LHOME o 213
Function and variable index, 215
APT index 221
Fortran API index....... e 225
Experimental APl index 226
Embedding APl index i, 227

Concept index 228

Acknowledgements

The contributions to early versions of this manual by Saikat DebRoy (who wrote the first draft
of a guide to using .Call and .External) and Adrian Trapletti (who provided information on
the C++ interface) are gratefully acknowledged.

1 Creating R packages

Packages provide a mechanism for loading optional code, data and documentation as needed.
The R distribution itself includes about 30 packages.

In the following, we assume that you know the library() command, including its 1ib.loc
argument, and we also assume basic knowledge of the R CMD INSTALL utility. Otherwise, please
look at R’s help pages on

?library
?INSTALL

before reading on.

For packages which contain code to be compiled, a computing environment including a number
of tools is assumed; the “R Installation and Administration” manual describes what is needed

for each OS.

Once a source package is created, it must be installed by the command R CMD INSTALL. See
Section “Add-on packages” in R Installation and Administration.

Other types of extensions are supported (but rare): See Section 1.10 [Package types|, page 81.

Some notes on terminology complete this introduction. These will help with the reading of
this manual, and also in describing concepts accurately when asking for help.

A package is a directory of files which extend R, a source package (the master files of a
package), or a tarball containing the files of a source package, or an installed package, the result
of running R CMD INSTALL on a source package. On some platforms (notably macOS and ‘x86_64’
Windows) there are also binary packages, a zip file or tarball containing the files of an installed
package which can be unpacked rather than installing from sources.

A package is not! a library. The latter is used in two senses in R documentation.

e A directory into which packages are installed, e.g. /usr/1ib/R/1library: in that sense it is
sometimes referred to as a library directory or library tree (since the library is a directory
which contains packages as directories, which themselves contain directories).

e That used by the operating system, as a shared, dynamic or static library or (especially on
Windows) a DLL, where the second L stands for ‘library’. Installed packages may contain
compiled code in what is known on Unix-alikes as a shared object and on Windows as a DLL.
The concept of a shared library (dynamic library on macOS) as a collection of compiled code
to which a package might link is also used, especially for R itself on some platforms. On
most platforms these concepts are interchangeable (shared objects and DLLs can both be
loaded into the R process and be linked against), but macOS distinguishes between shared
objects (extension .so) and dynamic libraries (extension .dylib).

There are a number of well-defined operations on source packages.

e The most common is installation which takes a source package and installs it in a library
using R CMD INSTALL or install.packages.

e Source packages can be built. This involves taking a source directory and creating a tarball
ready for distribution, including cleaning it up and creating PDF/HTML documentation
from any vignettes it may contain. Source packages (and most often tarballs) can be checked,
when a test installation is done and tested (including running its examples); also, the contents
of the package are tested in various ways for consistency and portability.

e Compilation is not a correct term for a package. Installing a source package which contains
C, C++ or Fortran code will involve compiling that code. There is also the possibility of
‘byte’ compiling the R code in a package (using the facilities of package compiler): nowadays

1 although this is a persistent mis-usage. It seems to stem from S, whose analogues of R’s packages were officially
known as library sections and later as chapters, but almost always referred to as libraries.

Chapter 1: Creating R packages 3

this is enabled by default for all packages. So compiling a package may come to mean
byte-compiling its R code.

e It used to be unambiguous to talk about loading an installed package using 1ibrary (), but
since the advent of package namespaces this has been less clear: people now often talk about
loading the package’s namespace and then attaching the package so it becomes visible on
the search path. Function 1ibrary performs both steps, but a package’s namespace can be
loaded without the package being attached (for example by calls like splines: :ns).

The concept of lazy loading of code or data is mentioned at several points. This is part of
the installation, always selected for R code but optional for data. When used the R objects of
the package are created at installation time and stored in a database in the R directory of the
installed package, being loaded into the session at first use. This makes the R session start up
faster and use less (virtual) memory. (For technical details, see Section “Lazy loading” in R
Internals.)

CRAN is a network of WWW sites holding the R distributions and contributed code, especially
R packages. Users of R are encouraged to join in the collaborative project and to submit their
own packages to CRAN: current instructions are linked from https://CRAN.R-project.org/
banner.shtml#submitting.

1.1 Package structure

The sources of an R package consist of a subdirectory containing the files DESCRIPTION and
NAMESPACE, and the subdirectories R, data, demo, exec, inst, man, po, src, tests, tools and
vignettes (some of which can be missing, but which should not be empty). The package
subdirectory may also contain files INDEX, configure, cleanup, LICENSE, LICENCE and NEWS.
Other files such as INSTALL (for non-standard installation instructions), README /README.md?, or
ChangeLog will be ignored by R, but may be useful to end users. The utility R CMD build may
add files in a build directory (but this should not be used for other purposes).

Except where specifically mentioned,® packages should not contain Unix-style ‘hidden’
files/directories (that is, those whose name starts with a dot).

The DESCRIPTION and INDEX files are described in the subsections below. The NAMESPACE file
is described in the section on Section 1.5 [Package namespaces|, page 49.

The optional files configure and cleanup are (Bourne) shell scripts which are, respect-
ively, executed before and (if option --clean was given) after installation on Unix-alikes, see
Section 1.2 [Configure and cleanup], page 20. The analogues on Windows are configure.win and
cleanup.win. Since R 4.2.0 on Windows, configure.ucrt and cleanup.ucrt are supported
and take precedence over configure.win and cleanup.win. They can hence be used to provide
content specific to UCRT or Rtools42 and newer, if needed, but the support for .ucrt files may
be removed in future when building packages from source on the older versions of R will no
longer be needed, and hence the files may be renamed back to .win.

For the conventions for files NEWS and ChangeLog in the GNU project see https://www.gnu.
org/prep/standards/standards.html#Documentation.

The package subdirectory should be given the same name as the package. Because some file
systems (e.g., those on Windows and by default on macOS) are not case-sensitive, to maintain
portability it is strongly recommended that case distinctions not be used to distinguish different

2 This seems to be commonly used for a file in ‘markdown’ format. Be aware that most users of R will not
know that, nor know how to view such a file: platforms such as macOS and Windows do not have a default
viewer set in their file associations. The CRAN package web pages render such files in HTML: the converter
used expects the file to be encoded in UTF-8.

3 currently, top-level files .Rbuildignore and .Rinstignore, and vignettes/.install_extras.

https://CRAN.R-project.org/banner.shtml#submitting
https://CRAN.R-project.org/banner.shtml#submitting
https://www.gnu.org/prep/standards/standards.html#Documentation
https://www.gnu.org/prep/standards/standards.html#Documentation

Chapter 1: Creating R packages 4

packages. For example, if you have a package named foo, do not also create a package named
Foo.

To ensure that file names are valid across file systems and supported operating systems, the
ASCII control characters as well as the characters <"’, “*’, “:7, ¢/’ <’ > 2’ \’, and ‘|’ are not
allowed in file names. In addition, files with names ‘con’, ‘prn’, ‘aux’, ‘clock$’, ‘nul’, ‘coml’ to
com9’, and ‘lptl’ to ‘1pt9’ after conversion to lower case and stripping possible “extensions”
(e.g., ‘1pt5.foo.bar’), are disallowed. Also, file names in the same directory must not differ
only by case (see the previous paragraph). In addition, the basenames of ‘.Rd’ files may be used
in URLs and so must be ASCII and not contain %. For maximal portability filenames should only
contain only ASCII characters not excluded already (that is A-Za-z0-9. _'#$%&+, ;=0~ O {}’ []
— we exclude space as many utilities do not accept spaces in file paths): non-English alphabetic
characters cannot be guaranteed to be supported in all locales. It would be good practice to
avoid the shell metacharacters (){}’ [1$~: ~ is also used as part of ‘8.3’ filenames on Windows.
In addition, some applications on Windows can only work with path names of certain length,
following an earlier limit in the Windows operating system. Packages are normally distributed as
tarballs, and these have a limit on path lengths. So, to be friendly to users who themselves may
want to use a relatively long path where they extract the package, and for maximal portability,
100 bytes.

A source package if possible should not contain binary executable files: they are not portable,
and a security risk if they are of the appropriate architecture. R CMD check will warn about
them* unless they are listed (one filepath per line) in a file BinaryFiles at the top level of the
package. Note that CRAN will not accept submissions containing binary files even if they are
listed.

The R function package.skeleton can help to create the structure for a new package: see
its help page for details.

¢

1.1.1 The DESCRIPTION file
The DESCRIPTION file contains basic information about the package in the following format:

a N
Package: pkgname
Version: 0.5-1
Date: 2015-01-01
Title: My First Collection of Functions

Authors@R: c(person("Joe", "Developer", role = c("aut", "cre"),
email = "Joe.Developer@some.domain.net",
comment = c(ORCID = "nnnn-nnnn-nnnn-nnnn")),

person("Pat", "Developer", role = "aut"),
person("A.", "User", role = "ctb",
email = "A.User@whereever.net"))

Author: Joe Developer [aut, crel,
Pat Developer [aut],
A. User [ctb]
Maintainer: Joe Developer <Joe.Developer@some.domain.net>
Depends: R (>= 3.1.0), nlme
Suggests: MASS
Description: A (one paragraph) description of what
the package does and why it may be useful.
License: GPL (>= 2)
URL: https://www.r-project.org, http://www.another.url
BugReports: https://pkgname.bugtracker.url
- J

The format is that of a version of a ‘Debian Control File’ (see the help for ‘read.dcf’ and
https://www.debian.org/doc/debian-policy/ch-controlfields.html: R does not require

4 false positives are possible, but only a handful have been seen so far.

https://www.debian.org/doc/debian-policy/ch-controlfields.html

Chapter 1: Creating R packages 5

encoding in UTF-8 and does not support comments starting with ‘#’). Fields start with an ASCII
name immediately followed by a colon: the value starts after the colon and a space. Continuation
lines (for example, for descriptions longer than one line) start with a space or tab. Field names
are case-sensitive: all those used by R are capitalized.

For maximal portability, the DESCRIPTION file should be written entirely in ASCII — if this
is not possible it must contain an ‘Encoding’ field (see below).

Several optional fields take logical values: these can be specified as ‘yes’, ‘true’, ‘no’ or
‘false’: capitalized values are also accepted.

The ‘Package’, ‘Version’, ‘License’, ‘Description’, ‘Title’, ‘Author’, and ‘Maintainer’
fields are mandatory, all other fields are optional. Fields ‘Author’ and ‘Maintainer’ can be
auto-generated from ‘Authors@R’, and may be omitted if the latter is provided: however if they
are not ASCII we recommend that they are provided.

The mandatory ‘Package’ field gives the name of the package. This should contain only
(ASCII) letters, numbers and dot, have at least two characters and start with a letter and not
end in a dot. If it needs explaining, this should be done in the ‘Description’ field (and not the
‘Title’ field).

The mandatory ‘Version’ field gives the version of the package. This is a sequence of at
least two (and usually three) non-negative integers separated by single ‘.’ or ‘=’ characters. The
canonical form is as shown in the example, and a version such as ‘0.01’ or ‘0.01.0" will be
handled as if it were ‘0.1-0’. It is not a decimal number, so for example 0.9 < 0.75 since 9 <
75.

The mandatory ‘License’ field is discussed in the next subsection.

The mandatory ‘Title’ field should give a short description of the package. Some package
listings may truncate the title to 65 characters. It should use title case (that is, use capitals
for the principal words: tools::toTitleCase can help you with this), not use any markup,
not have any continuation lines, and not end in a period (unless part of ...). Do not repeat
the package name: it is often used prefixed by the name. Refer to other packages and external
software in single quotes, and to book titles (and similar) in double quotes.

The mandatory ‘Description’ field should give a comprehensive description of what the
package does. One can use several (complete) sentences, but only one paragraph. It should be
intelligible to all the intended readership (e.g. for a CRAN package to all CRAN users). It is good
practice not to start with the package name, ‘This package’ or similar. As with the ‘Title’ field,
double quotes should be used for quotations (including titles of books and articles), and single
quotes for non-English usage, including names of other packages and external software. This field
should also be used for explaining the package name if necessary. URLs should be enclosed in
angle brackets, e.g. ‘<https://www.r-project.org>’: see also Section 1.1.8 [Specifying URLs],
page 20.

The mandatory ‘Author’ field describes who wrote the package. It is a plain text field intended
for human readers, but not for automatic processing (such as extracting the email addresses of
all listed contributors: for that use ‘Authors@R’). Note that all significant contributors must be
included: if you wrote an R wrapper for the work of others included in the src directory, you
are not the sole (and maybe not even the main) author.

The mandatory ‘Maintainer’ field should give a single name followed by a valid (RFC 2822)
email address in angle brackets. It should not end in a period or comma. This field is what is
reported by the maintainer function and used by bug.report. For a CRAN package it should
be a person, not a mailing list and not a corporate entity: do ensure that it is valid and will
remain valid for the lifetime of the package.

Note that the display name (the part before the address in angle brackets) should be enclosed

in double quotes if it contains non-alphanumeric characters such as comma or period. (The
current standard, RFC 5322, allows periods but RFC 2822 did not.)

Chapter 1: Creating R packages 6

Both ‘Author’ and ‘Maintainer’ fields can be omitted if a suitable ‘Authors@R’ field is given.
This field can be used to provide a refined and machine-readable description of the package
“authors” (in particular specifying their precise roles), via suitable R code. It should create an
object of class "person", by either a call to person or a series of calls (one per “author”) concat-
enated by c(): see the example DESCRIPTION file above. The roles can include ‘"aut"’ (author)
for full authors, ‘"cre"’ (creator) for the package maintainer, and ‘"ctb"’ (contributor) for other
contributors, ‘"cph"’ (copyright holder, which should be the legal name for an institution or
corporate body), among others. See ?person for more information. Note that no role is assumed
by default. Auto-generated package citation information takes advantage of this specification.
The ‘Author’ and ‘Maintainer’ fields are auto-generated from it if needed when building® or
installing. Note that for CRAN submissions, providing ‘Authors@R’ is required, and providing
ORCID or ROR identifiers (see https://orcid.org/ and https://ror.org/) where possible
is strongly encouraged.

An optional ‘Copyright’ field can be used where the copyright holder(s) are not the authors.
If necessary, this can refer to an installed file: the convention is to use file inst/COPYRIGHTS.

The optional ‘Date’ field gives the release date of the current version of the package. It is
strongly recommended® to use the ‘yyyy-mm-dd’ format conforming to the ISO 8601 standard.

The ‘Depends’, ‘Imports’, ‘Suggests’, ‘Enhances’, ‘LinkingTo’ and
‘Additional_repositories’ fields are discussed in a later subsection.

Dependencies external to the R system should be listed in the ‘SystemRequirements’ field,

possibly amplified in a separate README file. This includes specifying a non-default C++ standard
and the need for GNU make.

The ‘URL’ field may give a list of URLs separated by commas or whitespace, for example the
homepage of the author or a page where additional material describing the software can be found.
These URLs are converted to active hyperlinks in CRAN package listings. See Section 1.1.8
[Specifying URLs], page 20.

The ‘BugReports’ field may contain a single URL to which bug reports about the package
should be submitted. This URL will be used by bug.report instead of sending an email to the
maintainer. A browser is opened for a ‘http://’ or ‘https://’ URL. To specify another email
address for bug reports, use ‘Contact’ instead: however bug.report will try to extract an email
address (preferably from a ‘mailto:” URL or enclosed in angle brackets) from ‘BugReports’.

Base and recommended packages (i.e., packages contained in the R source distribution or
available from CRAN and recommended to be included in every binary distribution of R) have a
‘Priority’ field with value ‘base’ or ‘recommended’, respectively. These priorities must not be
used by other packages.

A ‘Collate’ field can be used for controlling the collation order for the R code files in a package
when these are processed for package installation. The default is to collate according to the ‘C’
locale. If present, the collate specification must list all R code files in the package (taking possible
OS-specific subdirectories into account, see Section 1.1.5 [Package subdirectories], page 13)
as a whitespace separated list of file paths relative to the R subdirectory. Paths containing
white space or quotes need to be quoted. An OS-specific collation field (‘Collate.unix’ or
‘Collate.windows’) will be used in preference to ‘Collate’.

The ‘LazyData’ logical field controls whether the R datasets use lazy-loading. A ‘LazyLoad’
field was used in versions prior to 2.14.0, but now is ignored.

The ‘KeepSource’ logical field controls if the package code is sourced using keep.source =
TRUE or FALSE: it might be needed exceptionally for a package designed to always be used with
keep.source = TRUE.

5 at least if this is done in a locale which matches the package encoding.

6 and required by CRAN, so checked by R CMD check --as-cran.

https://orcid.org/
https://ror.org/

Chapter 1: Creating R packages 7

The ‘ByteCompile’ logical field controls if the package R code is to be byte-compiled on
installation: the default is to byte-compile. This can be overridden by installing with flag
--no-byte-compile.

The ‘UseLTO’ logical field is used to indicate if source code in the package” is to be compiled
with Link-Time Optimization (see Section 4.5 [Using Link-time Optimization], page 124) if R was
installed with --enable-1to (default true) or ~—enable-1to=R (default false) (or on Windows®
if LTO_OPT is set in MkRules). This can be overridden by the flags —~—use-LTO and --no-use-LTO.
LTO is said to give most size and performance improvements for large and complex (heavily
templated) C++ projects.

The ‘StagedInstall’ logical field controls if package installation is ‘staged’, that is done to a
temporary location and moved to the final location when successfully completed. This field was
introduced in R 3.6.0 and is true by default: it is considered to be a temporary measure which
may be withdrawn in future.

The ‘ZipData’ logical field has been ignored since R 2.13.0.

The ‘Biarch’ logical field is used on Windows to select the INSTALL option —-force-biarch
for this package. Not currently relevant.

The ‘BuildVignettes’ logical field can be set to a false value to stop R CMD build from
attempting to build the vignettes, as well as preventing® R CMD check from testing this. This
should only be used exceptionally, for example if the PDF's include large figures which are not
part of the package sources (and hence only in packages which do not have an Open Source
license).

The ‘VignetteBuilder’ field names (in a comma-separated list) packages that provide an
engine for building vignettes. These may include the current package, or ones listed in ‘Depends’,
‘Suggests’ or ‘Imports’. The utils package is always implicitly appended. See Section 1.4.2
[Non-Sweave vignettes|, page 48, for details. Note that if, for example, a vignette has engine
‘knitr::rmarkdown’, then knitr (https://CRAN.R-project.org/package=knitr) provides the
engine but both knitr and rmarkdown (https://CRAN.R-project.org/package=rmarkdown)
are needed for using it, so both these packages need to be in the ‘VignetteBuilder’ field and at
least suggested (as rmarkdown is only suggested by knitr, and hence not available automatically
along with it). Many packages using knitr (https://CRAN.R-project.org/package=knitr)
also need the package formatR (https://CRAN.R-project.org/package=formatR) which it
suggests and so the user package needs to do so too and include this in ‘VignetteBuilder’.

If the DESCRIPTION file is not entirely in ASCII it should contain an ‘Encoding’ field specifying
an encoding. This is used as the encoding of the DESCRIPTION file itself and of the R and NAMESPACE
files, and as the default encoding of .Rd files. The examples are assumed to be in this encoding
when running R CMD check, and it is used for the encoding of the CITATION file. Only encoding
names latinl and and UTF-8 are known to be portable. (Do not specify an encoding unless
one is actually needed: doing so makes the package less portable. If a package has a specified
encoding, you should run R CMD build etc in a locale using that encoding.)

The ‘NeedsCompilation’ field should be set to "yes" if the package contains native code
which needs to be compiled, otherwise "no" (when the package could be installed from source on
any platform without additional tools). This is used by install.packages(type = "both") in
R >= 2.15.2 on platforms where binary packages are the norm: it is normally set by R CMD build
or the repository assuming compilation is required if and only if the package has a src directory.

The ‘0S_type’ field specifies the OS(es) for which the package is intended. If present, it should
be one of unix or windows, and indicates that the package can only be installed on a platform
with ‘.Platform$0S.type’ having that value.

" without a src/Makefile file.
8 LTO is not currently supported by the toolchain used on ‘aarch64’.
9 But it is checked for Open Source packages by R CMD check --as-cran.

https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rmarkdown
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=formatR

Chapter 1: Creating R packages 8

The ‘Type’ field specifies the type of the package: see Section 1.10 [Package types|, page 81.

One can add subject classifications for the content of the package using the fields
‘Classification/ACM’ or ‘Classification/ACM-2012’ (using the Computing Classification
System of the Association for Computing Machinery, https://www.acm.org/publications/
class-2012; the former refers to the 1998 version), ‘Classification/JEL’ (the Journal of Eco-
nomic Literature Classification System, https://www.aeaweb.org/econlit/jelCodes.php, or
‘Classification/MSC’ or ‘Classification/MSC-2010’ (the Mathematics Subject Classification
of the American Mathematical Society, https://mathscinet.ams.org/msc/msc2010.html; the
former refers to the 2000 version). The subject classifications should be comma-separated lists of
the respective classification codes, e.g., ‘Classification/ACM: G.4, H.2.8, I.5.1.

A ‘Language’ field can be used to indicate if the package documentation is not in English: this
should be a comma-separated list of standard (not private use or grandfathered) IETF language
tags as currently defined by RFC 5646 (https://www.rfc-editor.org/rfc/rfc5646, see also
https://en.wikipedia.org/wiki/IETF_language_tag), i.e., use language subtags which in
essence are 2-letter ISO 639-1 (https://en.wikipedia.org/wiki/IS0_639-1) or 3-letter ISO
639-3 (https://en.wikipedia.org/wiki/IS0_639-3) language codes.

An ‘RdMacros’ field can be used to hold a comma-separated list of packages from which
the current package will import Rd macro definitions. These package should also be listed in
‘Imports’ (or ‘Depends’). The macros in these packages will be imported after the system macros,
in the order listed in the ‘RdMacros’ field, before any macro definitions in the current package are
loaded. Macro definitions in individual .Rd files in the man directory are loaded last, and are local
to later parts of that file. In case of duplicates, the last loaded definition will be used.!® Both R
CMD Rd2pdf and R CMD Rdconv have an optional flag ——RdMacros=pkglist. The option is also a
comma-separated list of package names, and has priority over the value given in DESCRIPTION.
Packages using Rd macros should depend on R 3.2.0 or later.

Note: There should be no ‘Built’ or ‘Packaged’ fields, as these are added by the
package management tools.

There is no restriction on the use of other fields not mentioned here (but using other
capitalizations of these field names would cause confusion). Fields Note, Contact (for contacting
the authors/developers'!') and Mailinglist are in common use. Some repositories (including
CRAN and R-forge) add their own fields.

1.1.2 Licensing

Licensing for a package which might be distributed is an important but potentially complex
subject.

It is very important that you include license information! Otherwise, it may not even be
legally correct for others to distribute copies of the package, let alone use it.

The package management tools use the concept of ‘free or open source software’ (FOSS, e.g.,
https://en.wikipedia.org/wiki/FOSS) licenses: the idea being that some users of R and its
packages want to restrict themselves to such software. Others need to ensure that there are no
restrictions stopping them using a package, e.g. forbidding commercial or military use. It is a
central tenet of FOSS software that there are no restrictions on users nor usage.

Do not use the ‘License’ field for information on copyright holders: if needed, use a ‘Copyright’
field.

The mandatory ‘License’ field in the DESCRIPTION file should specify the license of the package
in a standardized form. Alternatives are indicated wvia vertical bars. Individual specifications
must be one of

10 Duplicate definitions may trigger a warning: see Section 2.13 [User-defined macros], page 98.
1 bug.report will try to extract an email address from a Contact field if there is no BugReports field.

https://www.acm.org/publications/class-2012
https://www.acm.org/publications/class-2012
https://www.aeaweb.org/econlit/jelCodes.php
https://mathscinet.ams.org/msc/msc2010.html
https://www.rfc-editor.org/rfc/rfc5646
https://en.wikipedia.org/wiki/IETF_language_tag
https://en.wikipedia.org/wiki/ISO_639-1
https://en.wikipedia.org/wiki/ISO_639-3
https://en.wikipedia.org/wiki/FOSS

Chapter 1: Creating R packages 9

e One of the “standard” short specifications

GPL-2 GPL-3 LGPL-2 LGPL-2.1 LGPL-3 AGPL-3 Artistic-2.0
BSD_2_clause BSD_3_clause MIT

as made available via https://www.R-project.org/Licenses/ and contained in subdi-
rectory share/licenses of the R source or home directory.

e The names or abbreviations of other licenses contained in the license data base in file
share/licenses/license.db in the R source or home directory, possibly (for versioned
licenses) followed by a version restriction of the form ‘(op v)’ with ‘op’ one of the comparison
operators ‘<’ ‘=", ‘>’ >=" ‘==’ or ‘!=" and ‘v’ a numeric version specification (strings of
non-negative integers separated by ‘.’), possibly combined via *,’ (see below for an example).
For versioned licenses, one can also specify the name followed by the version, or combine an
existing abbreviation and the version with a ‘-’.

Abbreviations GPL and LGPL are ambiguous and usually'? taken to mean any version of the
license: but it is better not to use them.

e One of the strings ‘file LICENSE’ or ‘file LICENCE’ referring to a file named LICENSE or
LICENCE in the package (source and installation) top-level directory.

e The string ‘Unlimited’, meaning that there are no restrictions on distribution or use other
than those imposed by relevant laws (including copyright laws).

Multiple licences can be specified separated by ‘|’ (surrounded by spaces) in which case the user
can choose any of the alternatives.

If a package license restricts a base license (where permitted, e.g., using GPL-3 or AGPL-3
with an attribution clause), the additional terms should be placed in file LICENSE (or LICENCE),
and the string ‘+ file LICENSE’ (or ‘+ file LICENCE’, respectively) should be appended to the
corresponding individual license specification (preferably with the ‘+’ surrounded by spaces).
Note that several commonly used licenses do not permit restrictions: this includes GPL-2 and
hence any specification which includes it.

Examples of standardized specifications include

License: GPL-2

License: LGPL (>= 2.0, < 3) | Mozilla Public License
License: GPL-2 | file LICENCE

License: GPL (>= 2) | BSD_3_clause + file LICENSE
License: Artistic-2.0 | AGPL-3 + file LICENSE

Please note in particular that “Public domain” is not a valid license, since it is not recognized in
some jurisdictions.

Please ensure that the license you choose also covers any dependencies (including system
dependencies) of your package: it is particularly important that any restrictions on the use of
such dependencies are evident to people reading your DESCRIPTION file.

Fields ‘License_is_FO0SS’ and ‘License_restricts_use’ may be added by repositories where
information cannot be computed from the name of the license. ‘License_is_F0SS: yes’ is used
for licenses which are known to be FOSS, and ‘License_restricts_use’ can have values ‘yes’
or ‘no’ if the LICENSE file is known to restrict users or usage, or known not to. These are used
by, e.g., the available.packages filters.

The optional file LICENSE/LICENCE contains a copy of the license of the package. To avoid

any confusion only include such a file if it is referred to in the ‘License’ field of the DESCRIPTION
file.

Whereas you should feel free to include a license file in your source distribution, please do
not arrange to install yet another copy of the GNU COPYING or COPYING.LIB files but refer to

12 CRAN expands them to e.g. GPL-2 | GPL-3.

https://www.R-project.org/Licenses/

Chapter 1: Creating R packages 10

the copies on https://www.R-project.org/Licenses/ and included in the R distribution (in
directory share/licenses). Since files named LICENSE or LICENCE will be installed, do not use
these names for standard license files. To include comments about the licensing rather than the
body of a license, use a file named something like LICENSE.note.

A few “standard” licenses are rather license templates which need additional information to
be completed via ‘+ file LICENSE’ (with the ‘+’ surrounded by spaces). Where the additional
information is ‘COPYRIGHT HOLDER’, this must give the actual legal entities (not something vague
like ‘Name-of-package authors’): if more than one they should be listed in decreasing order of
contribution.

1.1.3 Package Dependencies

The ‘Depends’ field gives a comma-separated list of package names which this package depends
on. Those packages will be attached before the current package when library or require is
called. Each package name may be optionally followed by a comment in parentheses specifying
a version requirement. The comment should contain a comparison operator, whitespace and a
valid version number, e.g. ‘MASS (>= 3.1-20)".

The ‘Depends’ field can also specify a dependence on a certain version of R — e.g., if the
package works only with R version 4.0.0 or later, include ‘R (>= 4.0)’ in the ‘Depends’ field. (As
here, trailing zeroes can be dropped and it is recommended that they are.) You can also require
a certain SVN revision for R-devel or R-patched, e.g. ‘R (>=2.14.0), R (>= r56550)’ requires
a version later than R-devel of late July 2011 (including released versions of 2.14.0).

It makes no sense to declare a dependence on R without a version specification, nor on the
package base: this is an R package and package base is always available.

A package or ‘R’ can appear more than once in the ‘Depends’ field, for example to give upper
and lower bounds on acceptable versions.

It is inadvisable to use a dependence on R with patch level (the third digit) other than
zero. Doing so with packages which others depend on will cause the other packages to become
unusable under earlier versions in the series, and e.g. versions 4.x.1 are widely used throughout
the Northern Hemisphere academic year.

Both library and the R package checking facilities use this field: hence it is an error to use
improper syntax or misuse the ‘Depends’ field for comments on other software that might be
needed. The R INSTALL facilities check if the version of R used is recent enough for the package
being installed, and the list of packages which is specified will be attached (after checking version
requirements) before the current package.

The ‘Imports’ field lists packages whose namespaces are imported from (as specified in the
NAMESPACE file) but which do not need to be attached. Namespaces accessed by the ‘::’ and
:::7 operators must be listed here, or in ‘Suggests’ or ‘Enhances’ (see below). Ideally this field
will include all the standard packages that are used, and it is important to include S4-using
packages (as their class definitions can change and the DESCRIPTION file is used to decide which
packages to re-install when this happens). Packages declared in the ‘Depends’ field should not
also be in the ‘Imports’ field. Version requirements can be specified and are checked when the
namespace is loaded.

4

The ‘Suggests’ field uses the same syntax as ‘Depends’ and lists packages that are not
necessarily needed. This includes packages used only in examples, demos, tests or vignettes (see
Section 1.4 [Writing package vignettes], page 45), and packages loaded in the body of functions.
E.g., suppose an example!® from package foo uses a dataset from package bar. Then it is not
necessary to have bar to use foo unless one wants to execute all the examples: it is useful to

13 even one wrapped in \donttest, or a demo script.

https://www.R-project.org/Licenses/

Chapter 1: Creating R packages 11

have bar, but not necessary. Version requirements can be specified but should be checked by the
code which uses the package.

Finally, the ‘Enhances’ field lists packages “enhanced” by the package at hand, e.g., by provid-
ing methods for classes from these packages, or ways to handle objects from these packages (so
several packages have ‘Enhances: chron’ because they can handle datetime objects from chron
(https://CRAN.R-project.org/package=chron) even though they prefer R’s native datetime
functions). Version requirements can be specified, but are currently not used. Such packages
cannot be required to check the package: any tests which use them must be conditional on the
presence of the package. (If your tests use e.g. a dataset from another package it should be in
‘Suggests’ and not ‘Enhances’.)

The general rules are
e A package should be listed in only one of these fields.

e Packages whose namespace only is needed to load the package using library (pkgname)
should be listed in the ‘Imports’ field and not in the ‘Depends’ field. Packages listed in
import or importFrom directives in the NAMESPACE file should almost always be in ‘Imports’
and not ‘Depends’.

e Packages that need to be attached to successfully load the package using library (pkgname)
must be listed in the ‘Depends’ field.

e All packages that are needed'? to successfully run R CMD check on the package must be
listed in one of ‘Depends’ or ‘Suggests’ or ‘Imports’. Packages used to run examples
or tests conditionally (e.g. via if (require (pkgname))) should be listed in ‘Suggests’ or
‘Enhances’. (This allows checkers to ensure that all the packages needed for a complete
check are installed.)

e Packages needed to use datasets from the package should be in ‘Imports’: this includes
those needed to define S4 classes used.

In particular, packages providing “only” data for examples, demos or vignettes should be listed
in ‘Suggests’ rather than ‘Depends’ in order to make lean installations possible.

Version dependencies in the ‘Depends’ and ‘Imports’ fields are used by library when it
loads the package, and install.packages checks versions for the ‘Depends’, ‘Imports’ and (for
dependencies = TRUE) ‘Suggests’ fields.

It is important that the information in these fields is complete and accurate: it is for example
used to compute which packages depend on an updated package and which packages can safely
be installed in parallel.

This scheme was developed before all packages had namespaces (R 2.14.0 in October 2011),
and good practice changed once that was in place.

Field ‘Depends’ should nowadays be used rarely, only for packages which are intended to
be put on the search path to make their facilities available to the end user (and not to the
package itself): for example it makes sense that a user of package latticeExtra (https://CRAN.
R-project.org/package=latticeExtra) would want the functions of package lattice (https://
CRAN.R-project.org/package=lattice) made available.

Almost always packages mentioned in ‘Depends’ should also be imported from in the NAMESPACE
file: this ensures that any needed parts of those packages are available when some other package
imports the current package.

14 This includes all packages directly called by library and require calls, as well as data obtained via
data(theirdata, package = "somepkg") calls: R CMD check will warn about all of these. But there are subtler
uses which it may not detect: e.g. if package A uses package B and makes use of functionality in package B
which uses package C which package B suggests or enhances, then package C needs to be in the ‘Suggests’
list for package A. Nor will undeclared uses in included files be reported, nor unconditional uses of packages
listed under ‘Enhances’. R CMD check --as-cran will detect more of the subtler uses.

https://CRAN.R-project.org/package=chron
https://CRAN.R-project.org/package=chron
https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=latticeExtra
https://CRAN.R-project.org/package=lattice
https://CRAN.R-project.org/package=lattice

Chapter 1: Creating R packages 12

The ‘Imports’ field should not contain packages which are not imported from (via the
NAMESPACE file or :: or ::: operators), as all the packages listed in that field need to be installed
for the current package to be installed. (This is checked by R CMD check.)

R code in the package should call library or require only exceptionally. Such calls are
never needed for packages listed in ‘Depends’ as they will already be on the search path. It used
to be common practice to use require calls for packages listed in ‘Suggests’ in functions which
used their functionality, but nowadays it is better to access such functionality via :: calls.

A package that wishes to make use of header files in other packages to compile its C/C++ code
needs to declare them as a comma-separated list in the field ‘LinkingTo’ in the DESCRIPTION
file. For example

LinkingTo: linkl, 1link2
The ‘LinkingTo’ field can have a version requirement which is checked at installation.

Specifying a package in ‘LinkingTo’ suffices if these are C/C++ headers containing source
code or static linking is done at installation: the packages do not need to be (and usually
should not be) listed in the ‘Depends’ or ‘Imports’ fields. This includes CRAN package BH
(https://CRAN.R-project.org/package=BH) and almost all users of ReppArmadillo (https://
CRAN.R-project.org/package=RcppArmadillo) and RcppEigen (https://CRAN.R-project.
org/package=RcppEigen). Note that ‘LinkingTo’ applies only to installation: if a packages
wishes to use headers to compile code in tests or vignettes the package providing them needs to
be listed in ‘Suggests’ or perhaps ‘Depends’.

For another use of ‘LinkingTo’ see Section 5.4.3 [Linking to native routines in other packages],
page 136.

The ‘Additional_repositories’ field is a comma-separated list of repository URLs where
the packages named in the other fields may be found. It is currently used by R CMD check to
check that the packages can be found, at least as source packages (which can be installed on any
platform).

1.1.3.1 Suggested packages

Note that someone wanting to run the examples/tests/vignettes may not have a suggested package
available (and it may not even be possible to install it for that platform). The recommendation
used to be to make their use conditional via if (require("pkgname")): this is OK if that condit-
ioning is done in examples/tests/vignettes, although using if (requireNamespace (" pkgname"))
is preferred, if possible.

However, using require for conditioning in package code is not good practice as it alters the
search path for the rest of the session and relies on functions in that package not being masked
by other require or library calls. It is better practice to use code like

if (requireNamespace("rgl", quietly = TRUE)) {
rgl::plot3d(...)

} else {
do something else not involving rgl.

}

Note the use of rgl:: as that object would not necessarily be visible (and if it is, it need not be
the one from that namespace: plot3d occurs in several other packages). If the intention is to
give an error if the suggested package is not available, simply use e.g. rgl: :plot3d.

If the conditional code produces print output, function withAutoprint can be useful.

Note that the recommendation to use suggested packages conditionally in tests does also
apply to packages used to manage test suites: a notorious example was testthat (https://CRAN.
R-project.org/package=testthat) which in version 1.0.0 contained illegal C++ code and hence
could not be installed on standards-compliant platforms.

https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppEigen
https://CRAN.R-project.org/package=RcppEigen
https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=testthat

Chapter 1: Creating R packages 13

Some people have assumed that a ‘recommended’ package in ‘Suggests’ can safely be used
unconditionally, but this is not so. (R can be installed without recommended packages, and
which packages are ‘recommended’ may change.)

As noted above, packages in ‘Enhances’ must be used conditionally and hence objects within
them should always be accessed via : :.

On most systems, R CMD check can be run with only those packages declared in ‘Depends’
and ‘Imports’ by setting environment variable _R_CHECK_DEPENDS_ONLY_=true, whereas setting
_R_CHECK_SUGGESTS_ONLY_=true also allows suggested packages, but not those in ‘Enhances’
nor those not mentioned in the DESCRIPTION file. It is recommended that a package is checked
with each of these set, as well as with neither.

WARNING: Be extremely careful if you do things which would be run at installation time
depending on whether suggested packages are available or not—this includes top-level code in
R code files, .onLoad functions and the definitions of S4 classes and methods. The problem is
that once a namespace of a suggested package is loaded, references to it may be captured in
the installed package (most commonly in S4 methods), but the suggested package may not be
available when the installed package is used (which especially for binary packages might be on a
different machine). Even worse, the problems might not be confined to your package, for the
namespaces of your suggested packages will also be loaded whenever any package which imports
yours is installed and so may be captured there.

1.1.4 The INDEX file

The optional file INDEX contains a line for each sufficiently interesting object in the package, giving
its name and a description (functions such as print methods not usually called explicitly might
not be included). Normally this file is missing and the corresponding information is automatically
generated from the documentation sources (using tools::Rdindex()) when installing from
source.

The file is part of the information given by library(help = pkgname).

Rather than editing this file, it is preferable to put customized information about the package
into an overview help page (see Section 2.1.4 [Documenting packages|, page 90) and/or a vignette
(see Section 1.4 [Writing package vignettes|, page 45).

1.1.5 Package subdirectories

The R subdirectory contains R code files, only. The code files to be installed must start with an
ASCII (lower or upper case) letter or digit and have one of the extensions'® .R, .S, .q, .r, or .s.
We recommend using .R, as this extension seems to be not used by any other software. It should
be possible to read in the files using source(), so R objects must be created by assignments.
Note that there need be no connection between the name of the file and the R objects created by
it. Ideally, the R code files should only directly assign R objects and definitely should not call
functions with side effects such as require and options. If computations are required to create
objects these can use code ‘earlier’ in the package (see the ‘Collate’ field) plus functions in the
‘Depends’ packages provided that the objects created do not depend on those packages except
Vi@ namespace imports.

Extreme care is needed if top-level computations are made to depend on availability or not of
other packages. In particular this applies to setMethods and setClass calls. Nor should they
depend on the availability of external resources such as downloads.

Two exceptions are allowed: if the R subdirectory contains a file sysdata.rda (a saved image of
one or more R objects: please use suitable compression as suggested by tools: :resaveRdaFiles,

15 Extensions .S and .s arise from code originally written for S(-PLUS), but are commonly used for assembler
code. Extension .q was used for S, which at one time was tentatively called QPE.

Chapter 1: Creating R packages 14

and see also the ‘SysDataCompression’ DESCRIPTION field.) this will be lazy-loaded into the
namespace environment — this is intended for system datasets that are not intended to be
user-accessible via data. Also, files ending in ‘.in’ will be allowed in the R directory to allow a
configure script to generate suitable files.

Only ASCII characters (and the control characters tab, form feed, LF and CR) should be used
in code files. Other characters are accepted in comments', but then the comments may not
be readable in e.g. a UTF-8 locale. Non-ASCII characters in object names will normally!” fail
when the package is installed. Any byte will be allowed in a quoted character string but ‘\uxxxx’
escapes should be used for non-ASCII characters. However, non-ASCII character strings may not
be usable in some locales and may display incorrectly in others.

Various R functions in a package can be used to initialize and clean up. See Section 1.5.3
[Load hooks|, page 51.

The man subdirectory should contain (only) documentation files for the objects in the package
in R documentation (Rd) format. The documentation filenames must start with an ASCII (lower
or upper case) letter or digit and have the extension .Rd (the default) or .rd. Further, the names
must be valid in ‘file://’ URLSs, which means'® they must be entirely ASCII and not contain
‘%. See Chapter 2 [Writing R documentation files], page 83, for more information. Note that all
user-level objects in a package should be documented; if a package pkg contains user-level objects
which are for “internal” use only, it should provide a file pkg-internal.Rd which documents all
such objects, and clearly states that these are not meant to be called by the user. See e.g. the
sources for package grid in the R distribution. Note that packages which use internal objects
extensively should not export those objects from their namespace, when they do not need to be
documented (see Section 1.5 [Package namespaces|, page 49).

Having a man directory containing no documentation files may give an installation error.

The man subdirectory may contain a subdirectory named macros; this will contain source for
user-defined Rd macros. (See Section 2.13 [User-defined macros], page 98.) These use the Rd
format, but may not contain anything but macro definitions, comments and whitespace.

The R and man subdirectories may contain OS-specific subdirectories named unix or windows.

The sources and headers for the compiled code are in src, plus optionally a file Makevars or
Makefile (or for use on Windows, with extension .win or .ucrt). When a package is installed
using R CMD INSTALL, make is used to control compilation and linking into a shared object for
loading into R. There are default make variables and rules for this (determined when R is
configured and recorded in R_HOME/etcR_ARCH/Makeconf), providing support for C, C++, fixed-
or free-form Fortran, Objective C and Objective C++'? with associated extensions .c, .cc or
.cpp, -f, .£90 or .£95,%° .m, and .mm, respectively. We recommend using .h for headers, also
for C++%! or Fortran include files. (Use of extension .C for C++ is no longer supported.) Files
in the src directory should not be hidden (start with a dot), and hidden files will under some
versions of R be ignored.

It is not portable (and may not be possible at all) to mix all these languages in a single
package. Because R itself uses it, we know that C and fixed-form Fortran can be used together,
and mixing C, C++ and Fortran usually work for the platform’s native compilers.

16 but they should be in the encoding declared in the DESCRIPTION file.
17

18

This is true for OSes which implement the ‘C’ locale: Windows’ idea of the ‘C’ locale uses the WinAnsi charset.
More precisely, they can contain the English alphanumeric characters and the symbols ‘¢ - _ . + 1! > () , ;
=

either or both of which may not be supported on particular platforms. Their main use is on macOS, but

unfortunately recent versions of the macOS SDK have removed much of the support for Objective C v1.0 and
Objective C++.

This is not accepted by the Intel Fortran compiler.

19

20

21 Using .hpp is not guaranteed to be portable.

Chapter 1: Creating R packages 15

If your code needs to depend on the platform there are certain defines which can be used
in C or C++. On all Windows builds (even 64-bit ones) ‘_WIN32’ will be defined: on 64-bit
Windows builds also ‘_WIN64’. For Windows on ARM, test for ‘_M_ARM64’ or both ‘_WIN32’ and
‘__aarch64__’". On macOS ‘__APPLE__’ is defined??; for an ‘Apple Silicon’ platform, test for both
‘__APPLE__’ and ‘__arm64__".

The default rules can be tweaked by setting macros? in a file src/Makevars (see Section 1.2.1
[Using Makevars|, page 25). Note that this mechanism should be general enough to eliminate the
need for a package-specific src/Makefile. If such a file is to be distributed, considerable care
is needed to make it general enough to work on all R platforms. If it has any targets at all, it
should have an appropriate first target named ‘all’ and a (possibly empty) target ‘clean’ which
removes all files generated by running make (to be used by ‘R CMD INSTALL --clean’ and ‘R CMD
INSTALL --preclean’). There are platform-specific file names on Windows: src/Makevars.win
takes precedence over src/Makevars and src/Makefile.win must be used. Since R 4.2.0,
src/Makevars.ucrt takes precedence over src/Makevars.win and src/Makefile.ucrt takes
precedence over src/Makefile.win. src/Makevars.ucrt and src/Makefile.ucrt will be ign-
ored by earlier versions of R, and hence can be used to provide content specific to UCRT or
Rtools42 and newer, but the support for .ucrt files may be removed in the future when building
packages from source on the older versions of R will no longer be needed, and hence the files
may be renamed back to .win. Some make programs require makefiles to have a complete final
line, including a newline.

A few packages use the src directory for purposes other than making a shared object (e.g. to
create executables). Such packages should have files src/Makefile and src/Makefile.win or
src/Makefile.ucrt (unless intended for only Unix-alikes or only Windows). Note that on Unix
such makefiles are included after R_HOME/etc/R_ARCH/Makeconf so all the usual R macros and
make rules are available — for example C compilation will by default use the C compiler and flags
with which R was configured. This also applies on Windows as from R 4.3.0: packages intended
to be used with earlier versions should include that file themselves.

The order of inclusion of makefiles for a package which does not have a src/Makefile file is

Unix-alike Windows

src/Makevars src/Makevars.ucrt, src/Makevars.win
R_HOME/etc/R_ARCH/Makeconf R_HOME/etc/R_ARCH/Makeconf
R_MAKEVARS_SITE, R_HOME/etc/R_ R_MAKEVARS_SITE, R_HOME/etc/R_
ARCH/Makevars.site ARCH/Makevars.site
R_HOME/share/make/shlib.mk R_HOME/share/make/winshlib.mk
R_MAKEVARS_USER, ~/.R/Makevars-platform, R_MAKEVARS_USER, ~/.R/Makevars.ucrt,
~/.R/Makevars ~/.R/Makevars.win64,

~/.R/Makevars.win
For those which do, it is

R_HOME/etc/R_ARCH/Makeconf R_HOME/etc/R_ARCH/Makeconf
R_MAKEVARS_SITE, R_HOME/etc/R_ R_MAKEVARS_SITE, R_HOME/etc/R_
ARCH/Makevars.site ARCH/Makevars.site

src/Makefile src/Makefile.ucrt, src/Makefile.win
R_MAKEVARS_USER, ~/.R/Makevars-platform, R_MAKEVARS_USER, ~/.R/Makevars.ucrt,
~/.R/Makevars ~/.R/Makevars.win64,

~/.R/Makevars.win

Items in capitals are environment variables: those separated by commas are alternatives looked
for in the order shown.

22 There is also ‘__APPLE_CC__’, but that indicates a compiler with Apple-specific features not the OS, although
for historical reasons it is defined by LLVM clang. It is used in Rinlinedfuns.h.

23 the POSIX terminology, called ‘make variables’ by GNU make.

Chapter 1: Creating R packages 16

In very special cases packages may create binary files other than the shared objects/DLLs
in the src directory. Such files will not be installed in a multi-architecture setting since R CMD
INSTALL --1ibs-only is used to merge multiple sub-architectures and it only copies shared
objects/DLLs. If a package wants to install other binaries (for example executable programs), it
should provide an R script src/install.libs.R which will be run as part of the installation
in the src build directory instead of copying the shared objects/DLLs. The script is run in a
separate R environment containing the following variables: R_PACKAGE_NAME (the name of the
package), R_PACKAGE_SOURCE (the path to the source directory of the package), R_PACKAGE_DIR
(the path of the target installation directory of the package), R_ARCH (the arch-dependent part
of the path, often empty), SHLIB_EXT (the extension of shared objects) and WINDOWS (TRUE on
Windows, FALSE elsewhere). Something close to the default behavior could be replicated with
the following src/install.libs.R file:

files <- Sys.glob(pasteO("*", SHLIB_EXT))
dest <- file.path(R_PACKAGE_DIR, pasteO(’libs’, R_ARCH))
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(files, dest, overwrite = TRUE)
if(file.exists("symbols.rds"))

file.copy("symbols.rds", dest, overwrite = TRUE)

On the other hand, executable programs could be installed along the lines of

execs <- c("one", "two", "three")

if (WINDOWS) execs <- pasteO(execs, ".exe")

if (any(file.exists(execs))) {
dest <- file.path(R_PACKAGE_DIR, pasteO(’bin’, R_ARCH))
dir.create(dest, recursive = TRUE, showWarnings = FALSE)
file.copy(execs, dest, overwrite = TRUE)

¥

Note the use of architecture-specific subdirectories of bin where needed. (Executables should
installed under a bin directory and not under 1ibs. It is good practice to check that they can
be executed as part of the installation script, so a broken package is not installed.)

The data subdirectory is for data files: See Section 1.1.6 [Data in packages|, page 18.

The demo subdirectory is for R scripts (for running via demo()) that demonstrate some of
the functionality of the package. Demos may be interactive and are not checked automatically?*,
so if testing is desired use code in the tests directory to achieve this. The script files must
start with a (lower or upper case) letter and have one of the extensions .R or .r. If present, the
demo subdirectory should also have a 00Index file with one line for each demo, giving its name
and a description separated by a tab or at least three spaces. (This index file is not generated
automatically.) Note that a demo does not have a specified encoding and so should be an ASCII
file (see Section 1.6.3 [Encoding issues|, page 66). Function demo () will use the package encoding
if there is one, but this is mainly useful for non-ASCIT comments.

The contents of the inst subdirectory will be copied recursively to the installation directory.
Subdirectories of inst should not interfere with those used by R (currently, R, data, demo, exec,
libs, man, help, html and Meta, and earlier versions used latex, R-ex). The copying of the
inst happens after src is built so its Makefile can create files to be installed. To exclude
files from being installed, one can specify a list of exclude patterns in file .Rinstignore in the
top-level source directory. These patterns should be Perl-like regular expressions (see the help
for regexp in R for the precise details), one per line, to be matched case-insensitively against
the file and directory paths, e.g. doc/.*[.]png$ will exclude all PNG files in inst/doc based
on the extension.

24 As from R 4.5.0, R CMD check can be invoked with option --run-demo to check demos analogously to tests,
including comparisons with optional reference outputs in .Rout.save files.

Chapter 1: Creating R packages 17

Note that with the exceptions of INDEX, LICENSE/LICENCE and NEWS, information files at the
top level of the package will not be installed and so not be known to users of Windows and macOS
compiled packages (and not seen by those who use R CMD INSTALL or install.packages() on
the tarball). So any information files you wish an end user to see should be included in inst.
Note that if the named exceptions also occur in inst, the version in inst will be that seen in
the installed package.

Things you might like to add to inst are a CITATION file for use by the citation function, and
a NEWS.Rd file for use by the news function. See its help page for the specific format restrictions
of the NEWS.Rd file.

Another file sometimes needed in inst is AUTHORS or COPYRIGHTS to specify the authors or
copyright holders when this is too complex to put in the DESCRIPTION file.

Subdirectory tests is for additional package-specific test code, similar to the specific tests
that come with the R distribution. Test code can either be provided directly in a .R (or .r as
from R 3.4.0) file, or via a .Rin file containing code which in turn creates the corresponding
.R file (e.g., by collecting all function objects in the package and then calling them with the
strangest arguments). The results of running a .R file are written to a .Rout file. If there is a
corresponding?® .Rout.save file, these two are compared, with differences being reported but
not causing an error. The directory tests is copied to the check area, and the tests are run with
the copy as the working directory and with R_LIBS set to ensure that the copy of the package
installed during testing will be found by library(pkg_name). Note that the package-specific
tests are run in a vanilla R session without setting the random-number seed, so tests which use
random numbers will need to set the seed to obtain reproducible results (and it can be helpful to
do so in all cases, to avoid occasional failures when tests are run).

If directory tests has a subdirectory Examples containing a file pkg-Ex.Rout . save, this is
compared to the output file for running the examples when the latter are checked. Reference
output should be produced without having the --timings option set (and note that --as-cran
sets it).

If reference output is included for examples, demos, tests or vignettes do make sure that it
is fully reproducible, as it will be compared verbatim to that produced in a check run, unless
the ‘IGNORE_RDIFF’ markup is used. Things which trip up maintainers include displayed version
numbers from loading other packages, printing numerical results to an unreproducibly high
precision and printing timings. Another trap is small values which are in fact rounding error
from zero: consider using zapsmall.

Subdirectory exec could contain additional executable scripts the package needs, typically
scripts for interpreters such as the shell, Perl, or Tcl. NB: only files (and not directories) under
exec are installed (and those with names starting with a dot are ignored), and they are all
marked as executable (mode 755, moderated by ‘umask’) on POSIX platforms. Note too that
this is not suitable for executable programs since some platforms support multiple architectures
using the same installed package directory.

Subdirectory po is used for files related to localization: see Section 1.8 [Internationalization],
page 79.

Subdirectory tools is the preferred place for auxiliary files needed during configuration, and
also for sources need to re-create scripts (e.g. M4 files for autoconf: some prefer to put those in
a subdirectory m4 of tools).

25 The best way to generate such a file is to copy the .Rout from a successful run of R CMD check. If you
want to generate it separately, do run R with options --vanilla --no-echo and with environment variable
LANGUAGE=en set to get messages in English. Be careful not to use output with the option --timings (and
note that --as-cran sets it).

Chapter 1: Creating R packages 18

1.1.6 Data in packages

The data subdirectory is for data files, either to be made available via lazy-loading or for loading
using data(). (The choice is made by the ‘LazyData’ field in the DESCRIPTION file: the default
is not to do so.) It should not be used for other data files needed by the package, and the
convention has grown up to use directory inst/extdata for such files.

Data files can have one of three types as indicated by their extension: plain R code (.R or
.r), tables (.tab, .txt, or .csv, see 7data for the file formats, and note that .csv is not the
standard? CSV format), or save() images (.RData or .rda). The files should not be hidden
(have names starting with a dot). Note that R code should be if possible “self-sufficient” and
not make use of extra functionality provided by the package, so that the data file can also be
used without having to load the package or its namespace: it should run as silently as possible
and not change the search() path by attaching packages or other environments.

Images (extensions .RData?" or .rda) can contain references to the namespaces of packages
that were used to create them. Preferably there should be no such references in data files, and in
any case they should only be to packages listed in the Depends and Imports fields, as otherwise it
may be impossible to install the package. To check for such references, load all the images into a
vanilla R session, run str() on all the datasets, and look at the output of loadedNamespaces ().

Particular care is needed where a dataset or one of its components is of an S4 class, especially
if the class is defined in a different package. First, the package containing the class definition has
to be available to do useful things with the dataset, so that package must be listed in Imports
or Depends (even if this gives a check warning about unused imports). Second, the definition
of an S4 class can change, and often is unnoticed when in a package with a different author.
So it may be wiser to use the .R form and use that to create the dataset object when needed
(loading package namespaces but not attaching them by using requireNamespace (pkg, quietly
= TRUE) and using pkg: : to refer to objects in the namespace).

If you are not using ‘LazyData’ and either your data files are large or e.g., you use data/foo.R
scripts to produce your data, loading your namespace, you can speed up installation by providing
a file datalist in the data subdirectory. This should have one line per topic that data() will
find, in the format ‘foo’ if data(foo) provides ‘foo’; or ‘foo: bar bah’ if data(foo) provides
‘bar’ and ‘bah’. R CMD build will automatically add a datalist file to data directories of over
1Mb, using the function tools: :add_datalist.

Tables (.tab, .txt, or .csv files) can be compressed by gzip, bzip2 or xz, optionally with
additional extension .gz, .bz2 or .xz.

If your package is to be distributed, do consider the resource implications of large datasets for
your users: they can make packages very slow to download and use up unwelcome amounts of
storage space, as well as taking many seconds to load. It is normally best to distribute large
datasets as .rda images prepared by save(, compress = TRUE) (the default). Using bzip2 or
xz compression will usually reduce the size of both the package tarball and the installed package,
in some cases by a factor of two or more.

Package tools has a couple of functions to help with data images: checkRdaFiles reports
on the way the image was saved, and resaveRdaFiles will re-save with a different type of
compression, including choosing the best type for that particular image.

Many packages using ‘LazyData’ will benefit from using a form of compression other than
gzip in the installed lazy-loading database. This can be selected by the -~-data-compress option
to R CMD INSTALL or by using the ‘LazyDataCompression’ field in the DESCRIPTION file. Useful
values are bzip2, xz and the default, gzip: value none is also accepted. The only way to discover

26 e.g. https://www.rfc-editor.org/rfc/rfc4180.

27 People who have trouble with case are advised to use .rda as a common error is to refer to abc.RData as
abc.Rdata!

https://www.rfc-editor.org/rfc/rfc4180

Chapter 1: Creating R packages 19

which is best is to try them all and look at the size of the pkgname/data/Rdata.rdb file. A
function to do that (quoting sizes in KB) is

CheckLazyDataCompression <- function(pkg)
{
pkg_name <- sub("_.*", "" pkg)
1lib <- tempfile(); dir.create(lib)
zs <- c("gzip", "bzip2", "xz")
res <- integer(3); names(res) <- zs
for (z in zs) {
opts <- c(pasteO("--data-compress=", z),

"--no-libs", "--no-help", "--no-demo", "--no-exec", "--no-test-load"
install.packages(pkg, lib, INSTALL_opts = opts, repos = NULL, quiet = TRUE)

res[z] <- file.size(file.path(lib, pkg_name, "data", "Rdata.rdb"))
}
ceiling(res/1024)
}

(applied to a source package without any ‘LazyDataCompression’ field). R CMD check will warn
if it finds a pkgname/data/Rdata.rdb file of more than 5MB without ‘LazyDataCompression’
being set. If you see that, run CheckLazyDataCompression() and set the field — to gzip in the
unlikely event?® that is the best choice.

The analogue for sysdata.rda is field ‘SysDataCompression’: the default is xz for files bigger
than 1MB otherwise gzip.

Lazy-loading is not supported for very large datasets (those which when serialized exceed
2GB, the limit for the format on 32-bit platforms).

1.1.7 Non-R scripts in packages

Code which needs to be compiled (C, C++, Fortran .. .) is included in the src subdirectory and
discussed elsewhere in this document.

Subdirectory exec could be used for scripts for interpreters such as the shell, BUGS,
JavaScript, Matlab, Perl, PHP (amap (https://CRAN.R-project.org/package=amap)),
Python or Tcl (Simile (https://CRAN.R-project.org/package=Simile)), or even R.
However, it seems more common to use the inst directory, for example WriteXLS/inst/Perl,
NMF/inst/m-files, RnavGraph/inst/tcl, RProtoBuf/inst/python and emdbook/inst/BUGS
and gridSVG/inst/js.

Java code is a special case: except for very small programs, . java files should be byte-compiled
(to a .class file) and distributed as part of a . jar file: the conventional location for the . jar
file(s) is inst/java. It is desirable (and required under an Open Source license) to make the
Java source files available: this is best done in a top-level java directory in the package—the
source files should not be installed.

If your package requires one of these interpreters or an extension then this should be declared
in the ‘SystemRequirements’ field of its DESCRIPTION file. (Users of Java most often do so
via rJava (https://CRAN.R-project.org/package=rJava), when depending on/importing that
suffices unless there is a version requirement on Java code in the package.)

Windows and Mac users should be aware that the Tcl extensions ‘BWidget’ and ‘Tktable’
(which have sometimes been included in the Windows®® and macOS R installers) are extensions
and do need to be declared (and that ‘Tktable’ is less widely available than it used to be,

28 For all the CRAN packages tested, either gz or bzip2 provided a very substantial reduction in installed size.
29 ‘BWidget’ still is on Windows but ‘Tktable’ was not in R 4.0.0.

https://CRAN.R-project.org/package=amap
https://CRAN.R-project.org/package=Simile
https://CRAN.R-project.org/package=rJava

Chapter 1: Creating R packages 20

including not in the main repositories for major Linux distributions). ‘BWidget’ needs to be
installed by the user on other OSes. This is fairly easy to do: first find the Tcl search path:

library (tcltk)
strsplit(tclvalue(’auto_path’), " ") [[1]]

then download the sources from https://sourceforge.net/projects/tcllib/files/
BWidget/ and in a terminal run something like

tar xf bwidget-1.9.14.tar.gz
sudo mv bwidget-1.9.14 /usr/local/lib

substituting a location on the Tcl search path for /usr/local/1ib if needed. (If no location on
that search path is writeable, you will need to add one each time ‘BWidget’ is to be used with
tcltk::addTclPath().)

To (silently) test for the presence of ‘Tktable’ one can use
library(tcltk)
have_tktable <- !isFALSE(suppressWarnings(tclRequire(’Tktable’)))

Installing ‘Tktable’ needs a C compiler and the Tk headers (not necessarily installed
with Tcl/Tk). At the time of writing the latest sources (from 2008) were available from
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz/
download, but needed patching for current Tk (8.6.11, but not 8.6.10) — a patch can be found at
https://www.stats.ox.ac.uk/pub/bdr/Tktable/. For a system installation of Tk you may
need to install ‘Tktable’ as ‘root’ as on e.g. Fedora all the locations on auto_path are owned
by ‘root’.

1.1.8 Specifying URLs
URLs in many places in the package documentation will be converted to clickable hyperlinks in
at least some of their renderings. So care is needed that their forms are correct and portable.

The full URL should be given, including the scheme (often ‘http://’ or ‘https://’) and a
final ¢/’ for references to directories.

Spaces in URLs are not portable and how they are handled does vary by HI'TP server and
by client. There should be no space in the host part of an ‘http://’ URL, and spaces in the
remainder should be encoded, with each space replaced by ‘%20’.

Reserved characters should be encoded unless used in their reserved sense: see the help on
URLencode ().

The canonical URL for a CRAN package is
https://cran.r-project.org/package=pkgname

and not a version starting ‘https://cran.r-project.org/web/packages/pkgname’.

1.2 Configure and cleanup

Note that most of this section is specific to Unix-alikes: see the comments later on about the
Windows port of R.

If your package needs some system-dependent configuration before installation you can include
an executable (Bourne®® shell script configure in your package which (if present) is executed

30 The script should only assume a POSIX-compliant /bin/sh — see https://pubs.opengroup.org/onlinepubs/
9699919799/utilities/V3_chap02.html. In particular bash extensions must not be used, and not all R
platforms have a bash command, let alone one at /bin/bash. All known shells used with R support the
use of backticks, but not all support ‘¢ (cmd)’. However, real-world shells are not fully POSIX-compliant and
omissions and idiosyncrasies need to be worked around—which Autoconf will do for you. Arithmetic expansion
is a known issue: see https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
for this and others. Some checks can be done by the checkbashisms Perl script at https://sourceforge.

https://sourceforge.net/projects/tcllib/files/BWidget/
https://sourceforge.net/projects/tcllib/files/BWidget/
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz/download
https://sourceforge.net/projects/tktable/files/tktable/2.10/Tktable2.10.tar.gz/download
https://www.stats.ox.ac.uk/pub/bdr/Tktable/
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Shell
https://sourceforge.net/projects/checkbaskisms/files

Chapter 1: Creating R packages 21

by R CMD INSTALL before any other action is performed. This can be a script created by the
Autoconf mechanism, but may also be a script written by yourself. Use this to detect if any
nonstandard libraries are present such that corresponding code in the package can be disabled
at install time rather than giving error messages when the package is compiled or used. To
summarize, the full power of Autoconf is available for your extension package (including variable
substitution, searching for libraries, etc.). Background and useful tips on Autoconf and related
tools (including pkg-config described below) can be found at https://autotools.info/.

A configure script is run in an environment which has all the environment variables set
for an R session (see R_HOME/etc/Renviron) plus R_PACKAGE_NAME (the name of the package),
R_PACKAGE_DIR (the path of the target installation directory of the package, a temporary location
for staged installs) and R_ARCH (the arch-dependent part of the path, often empty).

Under a Unix-alike only, an executable (Bourne shell) script cleanup is executed as the last
thing by R CMD INSTALL if option —--clean was given, and by R CMD build when preparing the
package for building from its source.

As an example consider we want to use functionality provided by a (C or Fortran) library
foo. Using Autoconf, we can create a configure script which checks for the library, sets variable
HAVE_F00 to TRUE if it was found and to FALSE otherwise, and then substitutes this value into
output files (by replacing instances of ‘@GHAVE_F00@’ in input files with the value of HAVE_F00).
For example, if a function named bar is to be made available by linking against library foo (i.e.,
using -1fo00), one could use

AC_CHECK_LIB(foo, fun, [HAVE_FOO=TRUE], [HAVE_FOO=FALSE])
AC_SUBST (HAVE_FO00)

AC_CONFIG_FILES([foo0.R])
AC_QUTPUT

in configure.ac (assuming Autoconf 2.50 or later).
The definition of the respective R function in foo.R.in could be

foo <- function(x) {
if ('@HAVE_F00Q)
stop("Sorry, library ’foo’ is not available")

From this file configure creates the actual R source file foo.R looking like

foo <- function(x) {
if ('\FALSE)
stop("Sorry, library ’foo’ is not available")

if library foo was not found (with the desired functionality). In this case, the above R code
effectively disables the function.

One could also use different file fragments for available and missing functionality, respectively.

You will very likely need to ensure that the same C compiler and compiler flags are used in
the configure tests as when compiling R or your package. Under a Unix-alike, you can achieve
this by including the following fragment early in configure.ac (before calling AC_PROG_CC or
anything which calls it)

net/projects/checkbaskisms/files, also available in most Linux distributions in a package named either
‘devscripts’ or ‘devscripts-checkbashisms’: a later version can be extracted from Debian sources such as
the most recent tar.xz in https://deb.debian.org/debian/pool/main/d/devscripts/ and has been needed
for recent versions of Perl.

https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://autotools.info/
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://sourceforge.net/projects/checkbaskisms/files
https://deb.debian.org/debian/pool/main/d/devscripts/

Chapter 1: Creating R packages 22

: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1
fi
CC=‘"${R_HOME}/bin/R" CMD config CC*
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS‘
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®

(Using ‘${R_HOME}/bin/R’ rather than just ‘R’ is necessary in order to use the correct version of
R when running the script as part of R CMD INSTALL, and the quotes since ‘${R_HOME}’ might
contain spaces.)

If your code does load checks (for example, to check for an entry point in a library or to run
code) then you will also need

LDFLAGS=‘"${R_HOME}/bin/R" CMD config LDFLAGS®

Packages written with C++ need to pick up the details for the C++ compiler and switch the
current language to C++ by something like

CXX=¢"${R_HOME}/bin/R" CMD config CXX‘
if test -z "$CXX"; then

AC_MSG_ERROR([No C++ compiler is available])
fi
CXXFLAGS=*"${R_HOME}/bin/R" CMD config CXXFLAGS°
CPPFLAGS=*"${R_HOME}/bin/R" CMD config CPPFLAGS°
AC_LANG(C++)

The latter is important, as for example C headers may not be available to C++ programs or may
not be written to avoid C++ name-mangling. Note that an R installation is not required to have
a C++ compiler so ‘CXX’ may be empty. If the package specifies a non-default C++ standard, use
the config variable names (such as CXX17) appropriate to the standard, but still set CXX and
CXXFLAGS.

You can use R CMD config to get the value of the basic configuration variables, and also the
header and library flags necessary for linking a front-end executable program against R, see R
CMD config --help for details. If you do, it is essential that you use both the command and the
appropriate flags, so that for example ‘CC’ must always be used with ‘CFLAGS’ and (for code to be
linked into a shared library) ‘CPICFLAGS’. For Fortran, be careful to use ‘FC FFLAGS FPICFLAGS’
for fixed-form Fortran and ‘FC FCFLAGS FPICFLAGS’ for free-form Fortran.

As from R 4.3.0, variables
CC CFLAGS CXX CXXFLAGS CPPFLAGS LDFLAGS FC FCFLAGS

are set in the environment (if not already set) when configure is called from R CMD INSTALL, in
case the script forgets to set them as described above. This includes making use of the selected
C standard (but not the C++ standard as that is selected at a later stage by R CMD SHLIB).

To check for an external BLAS library using the AX_BLAS macro from the official Autoconf
Macro Archive3!, one can use

FC=‘"${R_HOME}/bin/R" CMD config FC‘

FCLAGS=‘"${R_HOME}/bin/R" CMD config FFLAGS®

AC_PROG_FC

FLIBS=‘"${R_HOME}/bin/R" CMD config FLIBS

AX_BLAS([], AC_MSG_ERROR([could not find your BLAS library], 1))

31 https://www.gnu.org/software/autoconf-archive/ax_blas.html. If you include macros from that archive
you need to arrange for them to be included in the package sources for use by autorecont.

https://www.gnu.org/software/autoconf-archive/ax_blas.html

Chapter 1: Creating R packages 23

Note that FLIBS as determined by R must be used to ensure that Fortran code works on all R
platforms.

N.B.: If the configure script creates files, e.g. src/Makevars, you do need a cleanup script
to remove them. Otherwise R CMD build may ship the files that are created. For example,
package RODBC (https://CRAN.R-project.org/package=RODBC) has

#!/bin/sh

rm -f config.* src/Makevars src/config.h

As this example shows, configure often creates working files such as config.log. If you use a
hand-crafted script rather than one created by autoconf, it is highly recommended that you log
its actions to file config.log.

If your configure script needs auxiliary files, it is recommended that you ship them in a tools
directory (as R itself does).

You should bear in mind that the configure script will not be used on Windows systems.
If your package is to be made publicly available, please give enough information for a user
on a non-Unix-alike platform to configure it manually, or provide a configure.win script
(or configure.ucrt) to be used on that platform. (Optionally, there can be a cleanup.win
script (or cleanup.ucrt). Both should be shell scripts to be executed by ash, which is a
minimal version of Bourne-style sh. As from R 4.2.0, bash is used. When configure.win (or
configure.ucrt) is run the environment variables R_HOME (which uses ‘/’ as the file separator),
R_ARCH and R_ARCH_BIN will be set. Use R_ARCH to decide if this is a 64-bit build for Intel (its
value there is ‘/x64’) and to install DLLs to the correct place (${R_HOME}/1ibs${R_ARCH}). Use
R_ARCH_BIN to find the correct place under the bin directory, e.g. ${R_HOME}/bin${R_ARCH_
BIN}/Rscript.exe. If a configure.win script does compilation (including calling R CMD SHLIB),
most of the considerations above apply.

As the scripts on Windows are executed as sh ./configure.win and similar, any ’shebang’
first line (such as #! /bin/bash) is treated as a comment.

In some rare circumstances, the configuration and cleanup scripts need to know the location
into which the package is being installed. An example of this is a package that uses C code
and creates two shared object/DLLs. Usually, the object that is dynamically loaded by R
is linked against the second, dependent, object. On some systems, we can add the location
of this dependent object to the object that is dynamically loaded by R. This means that
each user does not have to set the value of the LD_LIBRARY_PATH (or equivalent) environment
variable, but that the secondary object is automatically resolved. Another example is when a
package installs support files that are required at run time, and their location is substituted
into an R data structure at installation time. The names of the top-level library directory (i.e.,
specifiable via the ‘-1’ argument) and the directory of the package itself are made available to the
installation scripts via the two shell/environment variables R_LIBRARY_DIR and R_PACKAGE_DIR.
Additionally, the name of the package (e.g. ‘survival’ or ‘MASS’) being installed is available from
the environment variable R_PACKAGE_NAME. (Currently the value of R_PACKAGE_DIR is always
${R_LIBRARY_DIR}/${R_PACKAGE_NAME}, but this used not to be the case when versioned installs
were allowed. Its main use is in configure.win (or configure.ucrt) scripts for the installation
path of external software’s DLLs.) Note that the value of R_LPACKAGE_DIR may contain spaces
and other shell-unfriendly characters, and so should be quoted in makefiles and configure scripts.

One of the more tricky tasks can be to find the headers and libraries of external software. One
tool which is increasingly available on Unix-alikes (but not by default®*? on macOS) to do this is

32 But it is available on the machines used to produce the CRAN binary packages: however as Apple does not
ship .pc files for its system libraries such as expat, libcurl, 1libxml2, sqlite3 and ‘zlib’, it may well not
find information on these. Some substitutes are available from https://github.com/R-macos/recipes/tree/
master/stubs/pkgconfig-darwin and are installed on the CRAN package builders.

https://CRAN.R-project.org/package=RODBC
https://github.com/R-macos/recipes/tree/master/stubs/pkgconfig-darwin
https://github.com/R-macos/recipes/tree/master/stubs/pkgconfig-darwin

Chapter 1: Creating R packages 24

pkg-config. The configure script will need to test for the presence of the command itself3?
(see for example package tiff (https://CRAN.R-project.org/package=tiff)), and if present it
can be asked if the software is installed, of a suitable version and for compilation/linking flags by
e.g.
$ pkg-config --exists ’libtiff-4 >= 4.1.0’ --print-errors # check the status
$ pkg-config --modversion libtiff-4

4.3.0
$ pkg-config --cflags libtiff-4
-I/usr/local/include

$ pkg-config --1libs libtiff-4

-L/usr/local/lib -1tiff

$ pkg-config --static --libs libtiff-4
-L/usr/local/lib -1tiff -lwebp -llzma -ljpeg -lz

Note that pkg-config --1ibs gives the information required to link against the default version3*

of that library (usually the dynamic one), and pkg-config --static --1ibs may be needed if
the static library is to be used.

Static libraries are commonly used on macOS and Windows to facilitate bundling external
software with binary distributions of packages. This means that portable (source) packages
need to allow for this. It is not safe to just use pkg-config —-static —-1ibs, as that will often
include further libraries that are not necessarily installed on the user’s system (or maybe only
the versioned library such as 1ibjbig.so0.2.1 is installed and not 1ibjbig.so which would be
needed to use -1jbig sometimes included in pkg-config --static --1libs libtiff-4).

Another issue is that pkg-config --exists may not be reliable. It checks not only that the
‘module’ is available but all of the dependencies, including those in principle needed for static
linking. (XQuartz 2.8.x only distributed dynamic libraries and not some of the .pc files needed
for --exists.)

Sometimes the name by which the software is known to pkg-config is not what one might
expect (e.g. ‘1ibxml-2.0’ even for 2.9.x). To get a complete list use

pkg-config --list-all | sort

Some external software provides a —-config command to do a similar job to pkg-config,
including

curl-config freetype-config gdal-config geos—-config
gsl-config iodbc-config libpng-config mnc-config
pcre-config pcre2-config xml2-config xslt-config

(curl-config is for libcurl not curl. nc-config is for netcdf.) Most have an option to use
static libraries.

N.B. These commands indicate what header paths and libraries are needed, but they do not
obviate the need to check that the recipes they give actually work. (This is especially necessary
for platforms which use static linking.)

If using Autoconf it is good practice to include all the Autoconf sources in the package (and
required for an Open Source package and tested by R CMD check --as-cran). This will include
the file configure.ac® in the top-level directory of the package. If extensions written in m4 are

33 1t is not wise to check the version of pkg-config as it is sometimes a link to pkgconf, a separate project with
a different version series.

34 Hut not all projects get this right when only a static library is installed, so it is often necessary to try in turn
pkg-config --1ibs and pkg-config --static --libs.
35 a decade ago Autoconf used configure.in: this is still accepted but should be renamed and autoreconf as

used by R CMD check --as-cran will report as such.

https://CRAN.R-project.org/package=tiff

Chapter 1: Creating R packages 25

needed, these should be included under the directory tools and included from configure.ac
via e.g.,
m4_include([tools/ax_pthread.m4])

Alternatively, Autoconf can be asked to search all .m4 files in a directory by including something
like3¢
AC_CONFIG_MACRO_DIR([tools/m4])

One source of such extensions is the ‘Autoconf Archive’ (https://www.gnu.org/software/
autoconf-archive/. It is not safe to assume this is installed on users’ machines, so the extension
should be shipped with the package (taking care to comply with its licence).

1.2.1 Using Makevars

Sometimes writing your own configure script can be avoided by supplying a file Makevars: also
one of the most common uses of a configure script is to make Makevars from Makevars.in.

A Makevars file is a makefile and is used as one of several makefiles by R CMD SHLIB (which
is called by R CMD INSTALL to compile code in the src directory). It should be written if at
all possible in a portable style, in particular (except for Makevars.win and Makevars.ucrt)
without the use of GNU extensions.

The most common use of a Makevars file is to set additional preprocessor options (for example
include paths and definitions) for C/C++ files via PKG_CPPFLAGS, and additional compiler flags
by setting PKG_CFLAGS, PKG_CXXFLAGS or PKG_FFLAGS, for C, C++ or Fortran respectively (see
Section 5.5 [Creating shared objects], page 137).

N.B.: Include paths are preprocessor options, not compiler options, and must be set in
PKG_CPPFLAGS as otherwise platform-specific paths (e.g. ‘~I/usr/local/include’) will take
precedence. PKG_CPPFLAGS should contain ‘-I’, ‘-D’, ‘-U’ and (where supported) ‘~include’ and
‘~pthread’ options: everything else should be a compiler flag. The order of flags matters, and
using ‘-I’ in PKG_CFLAGS or PKG_CXXFLAGS has led to hard-to-debug platform-specific errors.

Makevars can also be used to set flags for the linker, for example ‘-L’ and ‘-1’ options, via
PKG_LIBS.

When writing a Makevars file for a package you intend to distribute, take care to ensure that
it is not specific to your compiler: flags such as -02 -Wall -pedantic (and all other -W flags:
for the Oracle compilers these were used to pass arguments to compiler phases) are all specific to
GCC (and compilers such as clang which aim to be options-compatible with it).

Also, do not set variables such as CPPFLAGS, CFLAGS etc.: these should be settable by users
(sites) through appropriate personal (site-wide) Makevars files. See Section “Customizing package
compilation” in R Installation and Administration for more information.

There are some macros®” which are set whilst configuring the building of R itself and
are stored in R_HOME/etcR_ARCH/Makeconf. That makefile is included as a Makefile after
Makevars[.win], and the macros it defines can be used in macro assignments and make command
lines in the latter. These include

FLIBS A macro containing the set of libraries need to link Fortran code. This may need to
be included in PKG_LIBS: it will normally be included automatically if the package
contains Fortran source files in the src directory.

BLAS_LIBS
A macro containing the BLAS libraries used when building R. This may need to be
included in PKG_LIBS. Beware that if it is empty then the R executable will contain

36 For those using autoconf 2.70 or later there is also AC_CONFIG_MACRO_DIRS which allows multiple directories
to be specified.

37 in POSIX parlance: GNU make calls these ‘make variables’.

https://www.gnu.org/software/autoconf-archive/
https://www.gnu.org/software/autoconf-archive/

Chapter 1: Creating R packages 26

all the double-precision and double-complex BLAS routines, but no single-precision
nor complex routines. If BLAS_LIBS is included, then FLIBS also needs to be®®
included following it, as most BLAS libraries are written at least partially in Fortran.
However, it can be omitted if the package contains Fortran source code as that will
add FLIBS to the link line.

LAPACK_LIBS
A macro containing the LAPACK libraries (and paths where appropriate) used when
building R. This may need to be included in PKG_LIBS. It may point to a dynamic
library 1ibRlapack which contains the main double-precision LAPACK routines as
well as those double-complex LAPACK routines needed to build R, or it may point
to an external LAPACK library, or may be empty if an external BLAS library also
contains LAPACK.

[1libRlapack includes all the double-precision LAPACK routines which were current
in 2003 and a few more recent ones: a list of which routines are included is in file
src/modules/lapack/README. Note that an external LAPACK/BLAS library need
not do so, as some were ‘deprecated’ (and not compiled by default) in LAPACK
3.6.0 in late 2015.]

For portability, the macros BLAS_LIBS and FLIBS should always be included after
LAPACK_LIBS (and in that order).

SAFE_FFLAGS
A macro containing flags which are needed to circumvent over-optimization
of FORTRAN code: it is might be ‘-g -02 -ffloat-store’ or ‘-g -02 -msse2
-mfpmath=sse’ on ‘ix86’ platforms using gfortran. Note that this is not an addit-
ional flag to be used as part of PKG_FFLAGS, but a replacement for FFLAGS. See the
example later in this section.

Setting certain macros in Makevars will prevent R CMD SHLIB setting them: in particular if
Makevars sets ‘OBJECTS’ it will not be set on the make command line. This can be useful in
conjunction with implicit rules to allow other types of source code to be compiled and included
in the shared object. It can also be used to control the set of files which are compiled, either by
excluding some files in src or including some files in subdirectories. For example

OBJECTS = 4dfp/endianio.o 4dfp/Getifh.o R4dfp-object.o

Note that Makevars should not normally contain targets, as it is included before the def-
ault makefile and make will call the first target, intended to be all in the default makefile.
If you really need to circumvent that, use a suitable (phony) target all before any actual
targets in Makevars. [win]: for example package fastICA (https://CRAN.R-project.org/
package=fastICA) used to have

PKG_LIBS = @BLAS_LIBS@
SLAMC_FFLAGS=$(R_XTRA_FFLAGS) $(FPICFLAGS) $(SHLIB_FFLAGS) $(SAFE_FFLAGS)
all: $(SHLIB)

slamc.o: slamc.f
$(FC) $(SLAMC_FFLAGS) -c -o slamc.o slamc.f

needed to ensure that the LAPACK routines find some constants without infinite looping. The
Windows equivalent was

all: $(SHLIB)

38 at least on Unix-alikes: the Windows build currently resolves such dependencies to a static Fortran library

when Rblas.dll is built.

https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=fastICA

Chapter 1: Creating R packages 27

slamc.o: slamc.f
$(FC) $(SAFE_FFLAGS) -c -o slamc.o slamc.f

(since the other macros are all empty on that platform, and R’s internal BLAS was not used).
Note that the first target in Makevars will be called, but for back-compatibility it is best named
all.

If you want to create and then link to a library, say using code in a subdirectory, use something
like
.PHONY: all mylibs

all: $(SHLIB)
$(SHLIB): mylibs

mylibs:
(cd subdir; $(MAKE))
Be careful to create all the necessary dependencies, as there is no guarantee that the dependencies
of all will be run in a particular order (and some of the CRAN build machines use multiple
CPUs and parallel makes). In particular,

all: mylibs
does not suffice. GNU make does allow the construct

.NOTPARALLEL: all
all: mylibs $(SHLIB)

but that is not portable. dmake and pmake allow the similar .NO_PARALLEL, also not portable:
some variants of pmake accept .NOTPARALLEL as an alias for .NO_PARALLEL.

Note that on Windows it is required that Makevars[.win, .ucrt] does create a DLL: this
is needed as it is the only reliable way to ensure that building a DLL succeeded. If you want
to use the src directory for some purpose other than building a DLL, use a Makefile.win or
Makefile.ucrt file.

It is sometimes useful to have a target ‘clean’ in Makevars, Makevars.win or Makevars.ucrt:
this will be used by R CMD build to clean up (a copy of) the package sources. When it is run by
build it will have fewer macros set, in particular not $(SHLIB), nor $(0BJECTS) unless set in
the file itself. It would also be possible to add tasks to the target ‘shlib-clean’ which is run by
R CMD INSTALL and R CMD SHLIB with options --clean and --preclean.

Avoid the use of default (also known as ‘implicit’ rules) in makefiles, as these are make-specific.
Even when mandated by POSIX — GNU make does not comply and this has broken package
installation.

An unfortunately common error is to have
all: $(SHLIB) clean

which asks make to clean in parallel with compiling the code. Not only does this lead to hard-to-
debug installation errors, it wipes out all the evidence of any error (from a parallel make or not).
It is much better to leave cleaning to the end user using the facilities in the previous paragraph.

If you want to run R code in Makevars, e.g. to find configuration information, please do
ensure that you use the correct copy of R or Rscript: there might not be one in the path at all,
or it might be the wrong version or architecture. The correct way to do this is via

"$ (R_HOME) /bin$ (R_ARCH_BIN) /Rscript" filename
"$(R_HOME) /bin$ (R_ARCH_BIN) /Rscript" -e ’R expression’

where $(R_ARCH_BIN) is only needed currently on Windows.

Chapter 1: Creating R packages 28

Environment or make variables can be used to select different macros for Intel 64-bit code or
code for other architectures, for example (GNU make syntax, allowed on Windows)

1feq ||$(WIN) n ll64"

PKG_LIBS = value for 64-bit Intel Windows

else

PKG_LIBS = value for unknown Windows architectures
endif

On Windows there is normally a choice between linking to an import library or directly to
a DLL. Where possible, the latter is much more reliable: import libraries are tied to a specific
toolchain, and in particular on 64-bit Windows two different conventions have been commonly
used. So for example instead of

PKG_LIBS = -L$(XML_DIR)/1ib -1xml2
one can use

PKG_LIBS = -L$(XML_DIR)/bin -1xml2
since on Windows -1xxx will look in turn for

libxxx.dll.a
xxx.dll.a
libxxx.a
xxx.1lib
libxxx.dll
xxx.dll

where the first and second are conventionally import libraries, the third and fourth often static
libraries (with .1ib intended for Visual C++), but might be import libraries. See for example
https://sourceware.org/binutils/docs-2.20/1d/WIN32.htm1#WIN32.

The fly in the ointment is that the DLL might not be named 1ibxxx.dll, and in fact on
32-bit Windows there was a 1ibxml2.d11 whereas on one build for 64-bit Windows the DLL
is called 1ibxm12-2.d11. Using import libraries can cover over these differences but can cause
equal difficulties.

If static libraries are available they can save a lot of problems with run-time finding of DLLs,
especially when binary packages are to be distributed and even more when these support both
architectures. Where using DLLs is unavoidable we normally arrange (via configure.win or
configure.ucrt) to ship them in the same directory as the package DLL.

1.2.1.1 OpenMP support

There is some support for packages which wish to use OpenMP?. The make macros

SHLIB_OPENMP_CFLAGS
SHLIB_OPENMP_CXXFLAGS
SHLIB_OPENMP_FFLAGS

are available for use in src/Makevars, src/Makevars.win or Makevars.ucrt. Include the
appropriate macro in PKG_CFLAGS, PKG_CXXFLAGS and so on, and also in PKG_LIBS (but see
below for Fortran). C/C++ code that needs to be conditioned on the use of OpenMP can be used
inside #ifdef _OPENMP: note that some toolchains used for R (including Apple’s for macOS*°
and some others using clang®') have no OpenMP support at all, not even omp.h.

39 https://www.openmp.org/, https://en.wikipedia.org/wiki/OpenMP, https://hpc-tutorials.llnl.gov/

openmp/
There are somewhat fragile workarounds: see https://mac.r-project.org/openmp/.

Default builds of LLVM clang 3.8.0 and later have support for OpenMP, but the libomp run-time library
may not be installed.

40
41

https://sourceware.org/binutils/docs-2.20/ld/WIN32.html#WIN32
https://www.openmp.org/
https://en.wikipedia.org/wiki/OpenMP
https://hpc-tutorials.llnl.gov/openmp/
https://hpc-tutorials.llnl.gov/openmp/
https://mac.r-project.org/openmp/

Chapter 1: Creating R packages 29

For example, a package with C code written for OpenMP should have in src/Makevars the
lines

PKG_CFLAGS = $(SHLIB_OPENMP_CFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

Note that the macro SHLIB_OPENMP_CXXFLAGS applies to the default C++ compiler and not
necessarily to the C++17/20/23/26 compiler: users of the latter should do their own configure
checks. If you do use your own checks, make sure that OpenMP support is complete by compiling
and linking an OpenMP-using program: on some platforms the runtime library is optional and
on others that library depends on other optional libraries.

Some care is needed when compilers are from different families which may use different
OpenMP runtimes (e.g. clang vs GCC including gfortran, although it is often possible to use
the clang runtime with GCC but not vice versa: however gfortran >= 9 may generate calls not
in the clang runtime). For a package with Fortran code using OpenMP the appropriate lines are

PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_CFLAGS)

as the C compiler will be used to link the package code. There are platforms on which this
does not work for some OpenMP-using code and installation will fail. Since R >= 3.6.2 the best
alternative for a package with only Fortran sources using OpenMP is to use

USE_FC_TO_LINK =
PKG_FFLAGS = $(SHLIB_OPENMP_FFLAGS)
PKG_LIBS = $(SHLIB_OPENMP_FFLAGS)

in src/Makevars, src/Makevars.win or Makevars.ucrt. Note however, that when this is
used $(FLIBS) should not be included in PKG_LIBS since it is for linking Fortran-compiled code
by the C compiler.

Common platforms may inline all OpenMP calls and so tolerate the omission of the OpenMP
flag from PKG_LIBS, but this usually results in an installation failure with a different compiler or
compilation flags. So cross-check that e.g. ~fopenmp appears in the linking line in the installation
logs.

It is not portable to use OpenMP with more than one of C, C++ and Fortran in a single
package since it is not uncommon that the compilers are of different families.

For portability, any C/C++ code using the omp_* functions should include the omp.h header:
some compilers (but not all) include it when OpenMP mode is switched on (e.g. via flag
-fopenmp).

There is nothing*? to say what version of OpenMP is supported: version 4.0 (and much of
4.5 or 5.0) is supported by recent versions of the Linux and Windows platforms, but portable
packages cannot assume that end users have recent versions. Apple clang on macOS has
no OpenMP support. https://www.openmp.org/resources/openmp-compilers-tools/ gives
some idea of what compilers support what versions. Note that support for Fortran compilers
is often less up-to-date and that page suggests it is unwise to rely on a version later than 3.1.
Which introduced a Fortran OpenMP module, so Fortran users of OpenMP should include

use omp_1lib
Rarely, using OpenMP with clang on Linux generates calls in 1ibatomic, resulting in loading
messages like

undefined symbol: __atomic_compare_exchange
undefined symbol: __atomic_load

42 In most implementations the _OPENMP macro has value a date which can be mapped to an OpenMP version:
for example, value 201307 is the date of version 4.0 (July 2013). However this may be used to denote the
latest version which is partially supported, not that which is fully implemented.

https://www.openmp.org/resources/openmp-compilers-tools/

Chapter 1: Creating R packages 30

The workaround is to link with -latomic (having checked it exists).

The performance of OpenMP varies substantially between platforms. The Windows implem-
entation has substantial overheads, so is only beneficial if quite substantial tasks are run in
parallel. Also, on Windows new threads are started with the default*® FPU control word, so
computations done on OpenMP threads will not make use of extended-precision arithmetic which
is the default for the main process.

Do not include these macros unless your code does make use of OpenMP (possibly for C++
via included external headers): this can result in the OpenMP runtime being linked in, threads
being started,

Calling any of the R API from threaded code is ‘for experts only’ and strongly discouraged.
Many functions in the R API modify internal R data structures and might corrupt these data
structures if called simultaneously from multiple threads. Most R, API functions can signal errors,
which must only happen on the R main thread. Also, external libraries (e.g. LAPACK) may not
be thread-safe.

Packages are not standard-alone programs, and an R process could contain more than one
OpenMP-enabled package as well as other components (for example, an optimized BLAS) making
use of OpenMP. So careful consideration needs to be given to resource usage. OpenMP works
with parallel regions, and for most implementations the default is to use as many threads as
‘CPUs’ for such regions. Parallel regions can be nested, although it is common to use only a
single thread below the first level. The correctness of the detected number of ‘CPUs’ and the
assumption that the R process is entitled to use them all are both dubious assumptions. One
way to limit resources is to limit the overall number of threads available to OpenMP in the R
process: this can be done via environment variable OMP_THREAD_LIMIT, where implemented.**
Alternatively, the number of threads per region can be limited by the environment variable
OMP_NUM_THREADS or API call omp_set_num_threads, or, better, for the regions in your code as
part of their specification. E.g. R uses*®

#pragma omp parallel for num_threads(nthreads)
That way you only control your own code and not that of other OpenMP users.

Note that setting environment variables to control OpenMP is implementation-dependent and
may need to be done outside the R process or before any use of OpenMP (which might be by
another process or R itself). Also, implementation-specific variables such as KMP_THREAD_LIMIT
might take precedence.

1.2.1.2 Using pthreads

There is no direct support for the POSIX threads (more commonly known as pthreads): by
the time we considered adding it several packages were using it unconditionally so it seems that
nowadays it is universally available on POSIX operating systems.

For reasonably recent versions of gcc and clang the correct specification is
PKG_CPPFLAGS = -pthread
PKG_LIBS = -pthread
(and the plural version is also accepted on some systems/versions). For other platforms the
specification is

PKG_CPPFLAGS = -D_REENTRANT
PKG_LIBS = -lpthread

43 Windows default, not MinGW-w64 default.

4 Which it was at the time of writing with GCC, Intel and Clang compilers. The count may include the thread
running the main process.

45 Be careful not to declare nthreads as const int: the Oracle compiler required it to be ‘an lvalue’.

Chapter 1: Creating R packages 31

(and note that the library name is singular). This is what -pthread does on all known current
platforms (although earlier versions of OpenBSD used a different library name).

For a tutorial see https://hpc-tutorials.1llnl.gov/posix/.

POSIX threads are not normally used on Windows which has its own native concepts of
threads: however, recent toolchains do provide the pthreads header and library.

The presence of a working pthreads implementation cannot be unambiguously determined
without testing for yourself: however, that ‘_REENTRANT’ is defined in C/C++ code is a good
indication.

Note that not all pthreads implementations are equivalent as parts are optional (see
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html): for
example, macOS lacks the ‘Barriers’ option.

See also the comments on thread-safety and performance under OpenMP: on all known R
platforms OpenMP is implemented via pthreads and the known performance issues are in the
latter.

1.2.1.3 Compiling in sub-directories

Package authors fairly often want to organize code in sub-directories of src, for example if they
are including a separate piece of external software to which this is an R interface.

One simple way is simply to set 0BJECTS to be all the objects that need to be compiled,
including in sub-directories. For example, CRAN package RSiena (https://CRAN.R-project.
org/package=RSiena) has

SOURCES = $(wildcard data/#*.cpp network/*.cpp utils/*.cpp model/*.cpp model/*/*.cpp model/*/*/*.cpp)

OBJECTS = sienaO7utilities.o sienaO7internals.o sienaO7setup.o sienaO7models.o $(SOURCES:.cpp=.0)

One problem with that approach is that unless GNU make extensions are used, the source files
need to be listed and kept up-to-date. As in the following from CRAN package lossDev (https://
CRAN.R-project.org/package=lossDev):

OBJECTS.samplers = samplers/ExpandableArray.o samplers/Knots.o \
samplers/RJumpSpline.o samplers/RJumpSplineFactory.o \
samplers/RealSlicerOV.o samplers/SliceFactory0V.o samplers/MNorm.o

OBJECTS.distributions = distributions/DSpline.o \
distributions/DChisqr0V.o distributions/DTOV.o \
distributions/DNormOV.o distributions/DUnif0OV.o distributions/RScalarDist.o

OBJECTS.root = RJump.o

OBJECTS = $(0OBJECTS.samplers) $(0OBJECTS.distributions) $(OBJECTS.root)

Where the subdirectory is self-contained code with a suitable makefile, the best approach is
something like
PKG_LIBS = -LCsdp/lib -lsdp $(LAPACK_LIBS) $(BLAS_LIBS) $(FLIBS)

$(SHLIB): Csdp/lib/libsdp.a

Csdp/1ib/libsdp.a:
@(cd Csdp/lib && $(MAKE) libsdp.a \
CC="$(CC)" CFLAGS="$(CFLAGS) $(CPICFLAGS)" AR="$(AR)" RANLIB="$(RANLIB)")
Note the quotes: the macros can contain spaces, e.g. CC = "gcc -m64 -std=gnu99". Several
authors have forgotten about parallel makes: the static library in the subdirectory must be made
before the shared object ($(SHLIB)) and so the latter must depend on the former. Others forget
the need*® for position-independent code.

We really do not recommend using src/Makefile instead of src/Makevars, and as the
example above shows, it is not necessary.

46 A few OSes (AIX, Windows) do not need special flags for such code, but most do—although compilers will
often generate PIC code when not asked to do so.

https://hpc-tutorials.llnl.gov/posix/
https://pubs.opengroup.org/onlinepubs/009695399/basedefs/pthread.h.html
https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=RSiena
https://CRAN.R-project.org/package=lossDev
https://CRAN.R-project.org/package=lossDev

Chapter 1: Creating R packages 32

1.2.2 Configure example

It may be helpful to give an extended example of using a configure script to create a
src/Makevars file: this is based on that in the RODBC (https://CRAN.R-project.org/
package=R0ODBC) package.

The configure.ac file follows: configure is created from this by running autoconf in the
top-level package directory (containing configure.ac).
AC_INIT([RODBC], 1.1.8) dnl package name, version

dnl A user-specifiable option
odbc_mgr=""
AC_ARG_WITH([odbc-manager],
AC_HELP_STRING([--with-odbc-manager=MGR],
[specify the ODBC manager, e.g. odbc or iodbc]),
[odbc_mgr=$withvall)

if test "$odbc_mgr" = "odbc" ; then
AC_PATH_PROGS (ODBC_CONFIG, odbc_config)
fi

dnl Select an optional include path, from a configure option
dnl or from an environment variable.
AC_ARG_WITH([odbc-include],
AC_HELP_STRING([--with-odbc-include=INCLUDE_PATH],
[the location of ODBC header files]),
[odbc_include_path=$withvall)
RODBC_CPPFLAGS="-I."
if test [-n "$odbc_include_path"] ; then
RODBC_CPPFLAGS="-I. -I${odbc_include_path}"
else
if test [-n "${ODBC_INCLUDE}"] ; then
RODBC_CPPFLAGS="-I. -I${0DBC_INCLUDE}"
fi
fi

dnl ditto for a library path
AC_ARG_WITH([odbc-1ib],
AC_HELP_STRING([--with-odbc-1ib=LIB_PATH],
[the location of ODBC libraries]),
[odbc_lib_path=$withvall)
if test [-n "$odbc_lib_path"] ; then
LIBS="-L$odbc_lib_path ${LIBS}"
else
if test [-n "${0DBC_LIBS}"] ; then
LIBS="-L${0DBC_LIBS} ${LIBS}"
else
if test -n "${0ODBC_CONFIG}"; then
odbc_lib_path=‘odbc_config --1libs | sed s/-lodbc//¢
LIBS="${odbc_lib_path} ${LIBS}"
fi
fi
fi

dnl Now find the compiler and compiler flags to use
: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1
fi
CcC=‘"${R_HOME}/bin/R" CMD config CC¢
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS®
CPPFLAGS=‘"${R_HOME}/bin/R" CMD config CPPFLAGS®

if test -n "${ODBC_CONFIG}"; then

https://CRAN.R-project.org/package=RODBC
https://CRAN.R-project.org/package=RODBC

Chapter 1: Creating R packages 33

RODBC_CPPFLAGS=‘odbc_config --cflags®
fi
CPPFLAGS="${CPPFLAGS} ${RODBC_CPPFLAGS}"

dnl Check the headers can be found
AC_CHECK_HEADERS(sql.h sqlext.h)
if test "${ac_cv_header_sql_h}" = no ||
test "${ac_cv_header_sqlext_h}" = no; then
AC_MSG_ERROR("ODBC headers sql.h and sqlext.h not found")
fi

dnl search for a library containing an 0DBC function
if test [-n "${odbc_mgr}"] ; then
AC_SEARCH_LIBS(SQLTables, ${odbc_mgr}, ,
AC_MSG_ERROR("ODBC driver manager ${odbc_mgr} not found"))
else
AC_SEARCH_LIBS(SQLTables, odbc odbc32 iodbc, ,
AC_MSG_ERROR("no ODBC driver manager found"))
fi

dnl for 64-bit ODBC need SQL[UJLEN, and it is unclear where they are defined.
AC_CHECK_TYPES([SQLLEN, SQLULEN], , , [# include <sql.h>])

dnl for unixODBC header

AC_CHECK_SIZEOF(long, 4)

dnl substitute RODBC_CPPFLAGS and LIBS

AC_SUBST (RODBC_CPPFLAGS)

AC_SUBST(LIBS)

AC_CONFIG_HEADERS([src/config.h])

dnl and do substitution in the src/Makevars.in and src/config.h
AC_CONFIG_FILES([src/Makevars])

AC_OUTPUT

where src/Makevars.in would be simply

PKG_CPPFLAGS = QRODBC_CPPFLAGS@
PKG_LIBS = QLIBS@

A user can then be advised to specify the location of the ODBC driver manager files by
options like (lines broken for easier reading)

R CMD INSTALL \
--configure-args=’--with-odbc-include=/opt/local/include \
--with-odbc-1lib=/opt/local/lib --with-odbc-manager=iodbc’ \
RODBC

or by setting the environment variables 0ODBC_INCLUDE and ODBC_LIBS.

1.2.3 Using modern Fortran code

R assumes that source files with extension .f are fixed-form Fortran 90 (which includes Fortran
77), and passes them to the compiler specified by macro ‘FC’. The Fortran compiler will also
accept free-form Fortran 90/95 code with extension .£90 or (most*”) .£95.

The same compiler is used for both fixed-form and free-form Fortran code (with different
file extensions and possibly different flags). Macro PKG_FFLAGS can be used for package-specific
flags: for the un-encountered case that both are included in a single package and that different
flags are needed for the two forms, macro PKG_FCFLAGS is also available for free-form Fortran.

The code used to build R allows a ‘Fortran 90’ compiler to be selected as ‘FC’, so platforms
might be encountered which only support Fortran 90. However, Fortran 95 is supported on all
known platforms.

47 Tntel compilers do not by default but this is worked around when using packages without a src/Makefile.

Chapter 1: Creating R packages 34

Most compilers specified by ‘FC’ will accept most Fortran 2003, 2008 or 2018 code: such
code should still use file extension .£90. Most current platforms use gfortran where you might
need to include -std=£2003, -std=£2008 or (from version 8) -std=f2018 in PKG_FFLAGS or
PKG_FCFLAGS: the default is ‘GNU Fortran’, currently Fortran 2018 (but Fortran 95 prior to
gfortran 8) with non-standard extensions. The other compilers in current use (LLVM’s flang
(called flang-new before version 20) and Intel’s ifx) default to Fortran 2018%%.

It is good practice to describe a Fortran version requirement in DESCRIPTION’s
‘SystemRequirements’ field. Note that this is purely for information: the package also needs a
configure script to determine the compiler and set appropriate option(s) and test that the
features needed from the standard are actually supported.

The Fortran 2023 released in Nov 2023: as usual compiler vendors are introducing
support incrementally. For Intel’s ifx see https://www.intel.com/content/www/us/en/
developer/articles/technical/fortran-language-and-openmp-features-in-ifx.html#
Fortranj,20Standards. For LLVM’s flang see https://flang.llvm.org/docs/F202X.html.
gfortran does not have complete support even for the 2008 and 2018 standards, but the option
-std=f2023 is supported from version 14.1.

Modern versions of Fortran support modules, whereby compiling one source file creates a
module file which is then included in others. (Module files typically have a .mod extension: they
do depend on the compiler used and so should never be included in a package.) This creates
a dependence which make will not know about and often causes installation with a parallel
make to fail. Thus it is necessary to add explicit dependencies to src/Makevars to tell make the
constraints on the order of compilation. For example, if file iface.f90 creates a module ‘iface
used by files cmi.f90 and dmi.f90 then src/Makevars needs to contain something like

)

cmi.o dmi.o: iface.o

Some maintainers have found it difficult to find all the module dependencies which leads to
hard-to-reproduce installation failures. There are tools available to find these, including the Intel
compiler’s flag -gen-dep and makedepf90.

Note that it is not portable (although some platforms do accept it) to define a module of the
same name in multiple source files.

1.2.4 Using C++ code

R can be built without a C++ compiler although one is available (but not necessarily installed)
on all known R platforms. As from R 4.0.0 a C++ compiler will be selected only if it conforms to
the 2011 standard (‘C++11’). A minor update®® (‘C++14’) was published in December 2014 and
was used by default as from R 4.1.0 if supported. Further revisions ‘C++17’ (in December 2017),
‘C++20’ (with many new features in December 2020) and ‘C++23’ (in October 2024) have been
published since. The next revision, ‘C++26’, is expected in 2026/7 and several compilers already
have considerable support for the current draft.

The support in R for these standards has varied over the years: this version of the manual
only describes R 4.3.0 and later. For details of earlier versions, see the corresponding section in
their manuals.

The default standard for compiling R packages was changed to C++17 in R 4.3.0 if supported,
and from R 4.4.0 only a C++17 compiler will be selected as the default C++ compiler.

48 put was said to have complete support only from version 2023.0.0.

49 Some changes are linked from https://isocpp.org/std/standing-documents/
sd-6-sglO-feature-test-recommendations: there were also additional deprecations.

https://www.intel.com/content/www/us/en/developer/articles/technical/fortran-language-and-openmp-features-in-ifx.html#Fortran%20Standards
https://www.intel.com/content/www/us/en/developer/articles/technical/fortran-language-and-openmp-features-in-ifx.html#Fortran%20Standards
https://www.intel.com/content/www/us/en/developer/articles/technical/fortran-language-and-openmp-features-in-ifx.html#Fortran%20Standards
https://flang.llvm.org/docs/F202X.html
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations

Chapter 1: Creating R packages 35

What standard a C++ compiler aims to support can be hard to determine: the value®
of __cplusplus may help but some compilers use it to denote a standard which is partially
supported and some the latest standard which is (almost) fully supported. On a Unix-alike
configure will try to identify a compiler and flags for each of the standards: this relies heavily
on the reported values of __cplusplus.

The webpage https://en.cppreference.com/w/cpp/compiler_support gives some inform-
ation on which compiler versions are known to support recent C++ features.

C++ standards have deprecated and later removed features. Be aware that some current
compilers still accept removed features in C++17 mode, such as std: :unary_function (depre-
cated in C++11, removed in C++17).

For maximal portability a package should specify the standard it requires for code in its
src directory by including something like ‘C++14’ in the ‘SystemRequirements’ field of the
DESCRIPTION file, e.g.

SystemRequirements: C++14

If it has a Makevars file (or Makevars.win or Makevars.ucrt on Windows) this should include
the line

CXX_STD = CXX14

On the other hand, specifying C++115! when the code is valid under C++14 or C++17 reduces
future portability.

Code needing C++14 or later features can check for their presence via ‘SD-6 feature tests™2.
Such a check could be

#include <memory> // header where this is defined

#if defined(__cpp_lib_make_unique) && (__cpp_lib_make_unique >= 201304)
using std::make_unique;

#else

// your emulation

#endif

C++17, C++20, C++23 and C++26 (from R 4.5.0) can be specified in an analogous way.

Note that C++17 or later ‘support’ does not mean complete support: use feature tests as well
as resources such as https://en.cppreference.com/w/cpp/compiler_support, https://gcc.
gnu.org/projects/cxx-status.html and https://clang.llvm.org/cxx_status.html to see
if the features you want to use are widely implemented.

Attempts to specify an unknown C++ standard are silently ignored: recent versions of R throw
an error for C++98 and for known standards for which no compiler+flags has been detected.

If a package using C++ has a configure script it is essential that the script selects the correct
C++ compiler and standard, via something like

CXX17=“"${R_HOME}/bin/R" CMD config CXX17°¢
if test -z "$CXX17"; then

AC_MSG_ERROR([No C++17 compiler is available])
fi
CXX17STD=‘"${R_HOME}/bin/R" CMD conf ig CXX17STD ¢
CXX="${CXX17} ${CXX17STD}"

50 Values 201103L, 201402L, 201703L and 202002L are most commonly used for C++11, C++14, C++17 and C++20
respectively, but some compilers set 1L. For C++23 all that can currently be assumed is a value greater than
that for C++20: for example g++ 12 uses 202100L and clang++ (LLVM 15, Apple 14) uses 202101L.

5L Often historically used to mean ‘not C++98’

52 See https://isocpp.org/std/standing-documents/sd-6-sgl0-feature-test-recommendations or
https://en.cppreference.com/w/cpp/experimental/feature_test. It seems a reasonable assumption that
any compiler promising some C++14 conformance will provide these—e.g. g++ 4.9.x did but 4.8.5 did not.

https://en.cppreference.com/w/cpp/compiler_support
https://en.cppreference.com/w/cpp/compiler_support
https://gcc.gnu.org/projects/cxx-status.html
https://gcc.gnu.org/projects/cxx-status.html
https://clang.llvm.org/cxx_status.html
https://isocpp.org/std/standing-documents/sd-6-sg10-feature-test-recommendations
https://en.cppreference.com/w/cpp/experimental/feature_test

Chapter 1: Creating R packages 36

CXXFLAGS=‘"${R_HOME}/bin/R" CMD config CXX17FLAGS°
for an configure.ac file
AC_LANG(C++)

if C++17 was specified, but using

CXX=‘"${R_HOME}/bin/R" CMD config CXX°‘
CXXFLAGS=‘"${R_HOME}/bin/R" CMD config CXXFLAGS°
for an configure.ac file

AC_LANG(C++)

if no standard was specified.

If you want to compile C++ code in a subdirectory, make sure you pass down the macros to
specify the appropriate compiler, e.g. in src/Makevars

sublibs:
@(cd libs && $(MAKE) \
CXX="$(CXX17) $(CXX17STD)" CXXFLAGS="$(CXX17FLAGS) $(CXX17PICFLAGS)")

The discussion above is about the standard R ways of compiling C++: it will not apply to
packages using src/Makefile or building in a subdirectory that do not set the C++ standard. Do
not rely on the compilers’ default C++ standard, which varies widely and gets changed frequently
by vendors — for example Apple clang up to at least 16 defaults to C++98, LLVM clang 14-15 to
C++14, LLVM clang 16-20 and g++ 11-15 to C++17.

For a package with a src/Makefile (or a Windows analogue), a non-default C++ compiler
can be selected by including something like

CXX14 = ‘"${R_HOME}/bin/R" CMD config CXX14°¢

CXX14STD = ‘"${R_HOME}/bin/R" CMD config CXX14STD?

CXX = ${CXX14} ${CXX14STD}

CXXFLAGS = ‘"${R_HOME}/bin/R" CMD config CXX14FLAGS®

CXXPICFLAGS = ‘"${R_HOME}/bin/R" CMD config CXX14PICFLAGS®
SHLIB_LD = "${R_HOME}/bin/R" CMD config SHLIB_CXX14LD‘
SHLIB_LDFLAGS = "${R_HOME}/bin/R" CMD config SHLIB_CXX14LDFLAGS®

and ensuring these values are used in relevant compilations, after checking they are non-empty.
A common use of src/Makefile is to compile an executable, when likely something like (for
example for C++14)

if test -z "$CXX14"; then
AC_MSG_ERROR([No C++14 compiler is available])
fi
CXX = ${CXX14} ${CXX14STD}
CXXFLAGS = ${CXX14FLAGS}

suffices.

The .so/.d11 in a package may need to be linked by the C++ compiler if it or any library it
links to contains compiled C++ code. Dynamic linking usually brings in the C++ runtime library
(commonly 1ibstdc++ but can be, for example, 1ibc++) but static linking (as used for external
libraries on Windows and macOS) will not. R CMD INSTALL will link with the C++ compiler if
there are any top-level C++ files in src, but not if these are all in subdirectories. The simplest
way to force linking by the C++ compiler is to include an empty C++ file in src..

1.2.5 C standards

C has had standards C89/C90, C99, C11, C17 (also known as C18), and C23 (published in
2024). C11 was a minor change to C99 which introduced some new features and made others
optional, and C17 is a ‘bug-fix’ update to C11. On the other hand, C23 makes extensive changes,
including making bool, true and false reserved words, finally disallowing K&R-style function

Chapter 1: Creating R packages 37

declarations and changing the formerly deprecated meaning of function declarations with an
empty parameter list to now mean no parameters.’*(There are many other additions: see for
example https://en.cppreference.com/w/c/23.)

As from R 4.5.0, R’s configure script chooses a compiler option which selects C23 if one is
available. Some compilers (including gcc 15) default to C23 and most others from 2022/3 and
later have such an option.

The configure script in recent previous versions of R aimed to choose a C compiler which
supported C11: as the default in recent versions of gcc (prior to 15), LLVM clang and Apple
clang is C17, that is what is likely to be chosen. On the other hand, until R 4.3.0 the makefiles
for the Windows build specified C99 and up to R 4.4.3 used the compiler default which for the
recommended compiler was C17.

Packages may want to either avoid or embrace the changes in C23, and can do so via
specifying ‘USE_Cnn’ for 17, 23, 90 or 99 in the ‘SystemRequirements’ field of their DESCRIPTION
file of a package depending on ‘R (>=4.3.0)’. Those using a configure script should set the
corresponding compiler and flags, for example using

CC=¢"${R_HOME}/bin/R" CMD config CC23°
CFLAGS=‘"${R_HOME}/bin/R" CMD config C23FLAGS
CPPFLAGS=¢"${R_HOME}/bin/R" CMD config CPPFLAGS®
LDFLAGS=""${R_HOME}/bin/R" CMD config LDFLAGS

However, not all platforms will have a C23 compiler: the first line here will give an empty value
if no C23 compiler was found.

The (claimed) C standard in use can be checked by the macro __STDC_VERSION__. This is
undefined in C89/C90 and should have values 199901L, 201112L and 201710L for C99, C11 and
C17. The definitive value for C23 is 202311L but some compilers®® are currently using 202000L
and requiring the standard to be specified as c2x. C23 has macros similar to C++ ‘feature tests
for many of its changes, for example __STDC_VERSION_LIMITS_H

9

However, note the ‘claimed’ as no compiler had 100% conformance, and it is better to use
configure to test for the feature you want to use than to condition on the value of __STDC_
VERSION__. In particular, C11 alignment functionality such as _Alignas and aligned_alloc is
not implemented on Windows.

End users installing a source package can specify a standard by something like R CMD INSTALL
--use-C17. This overrides the ‘SystemRequirements’ field, but not any configure file.

1.2.6 Using cmake

Packages often wish to include the sources of other software and compile that for inclusion in their
.80 or .d1l, which is normally done by including (or unpacking) the sources in a subdirectory
of src, as considered above.

Further issues arise when the external software uses another build system such as cmake,
principally to ensure that all the settings for compilers, include and load paths efc are made.
This section has already mentioned the need to set at least some of

CC CFLAGS CXX CXXFLAGS CPPFLAGS LDFLAGS

CFLAGS and CXXFLAGS will need to include CPICFLAGS and CXXPICFLAGS respectively unless (as
below) cmake is asked to generate PIC code.

Setting these (and more) as environment variables controls the behaviour of cmake
(https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#

53 The latter has been implemented in gcc but not currently in LLVM nor Apple clang.
5 for example gcc 14 and Apple clang 16, but not gcc 15, LLVM clang 18 and later.

https://en.cppreference.com/w/c/23
https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#manual:cmake-env-variables(7)
https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#manual:cmake-env-variables(7)
https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#manual:cmake-env-variables(7)

Chapter 1: Creating R packages 38

manual : cmake-env-variables (7)), but it may be desirable to translate these into native
settings such as

CMAKE_C_COMPILER

CMAKE_C_FLAGS
CMAKE_CXX_COMPILER
CMAKE_CXX_FLAGS
CMAKE_INCLUDE_PATH
CMAKE_LIBRARY_PATH
CMAKE_SHARED_LINKER_FLAGS_INIT
CMAKE_OSX_DEPLOYMENT_TARGET

and it is often necessary to ensure a static library of PIC code is built by

-DBUILD_SHARED_LIBS:bool=0FF
-DCMAKE_POSITION_INDEPENDENT_CODE:bool=0N

If R is to be detected or used, this must be the build being used for package installation —
"${R_HOME}"/bin/R.

To fix ideas, consider a package with sources for a library myLib under src/libs. Two
approaches have been used. It is often most convenient to build the external software in a
directory other than its sources (particularly during development when the build directory can
be removed between builds rather than attempting to clean the sources) — this is illustrated in
the first approach.

1. Use the package’s configure script to create a static library src/build/libmyLib.a. This
can then be treated in the same way as external software, for example having in src/Makevars

PKG_CPPFLAGS = -Ilibs/include
PKG_LIBS = build/libmyLib.a

(-Lbuild -1myLib could also be used but this explicit specification avoids any confusion
with dynamic libraries of the same name.)

The configure script will need to contain something like (for C code)

: ${R_HOME=‘R RHOME‘}
if test -z "${R_HOME}"; then

echo "could not determine R_HOME"

exit 1
fi
CC=‘"${R_HOME}/bin/R" CMD config CC¢
CFLAGS=‘"${R_HOME}/bin/R" CMD config CFLAGS®
CPPFLAGS=°"${R_HOME}/bin/R" CMD config CPPFLAGS®
LDFLAGS=‘"${R_HOME}/bin/R" CMD config LDFLAGS®

cd src

mkdir build && cd build

cmake -S ../libs \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS:bool=0FF \
-DCMAKE_POSITION_INDEPENDENT_CODE:bool=0N

${MAKE}

2. Use src/Makevars (or src/Makevars.win or Makevars.ucrt) to build within the subdi-

rectory. This could be something like (for C code)

PKG_CPPFLAGS = -Ilibs/include
PKG_LIBS = libs/libmyLib.a

https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#manual:cmake-env-variables(7)
https://cmake.org/cmake/help/latest/manual/cmake-env-variables.7.html#manual:cmake-env-variables(7)

Chapter 1: Creating R packages 39

$(SHLIB): mylibs

mylibs:
(cd 1ibs; \

CC="$(CC)" CFLAGS="$(CFLAGS)" \

CPPFLAGS="$ (CPPFLAGS)" LDFLAGS="$(LDFLAGS)" \

cmake . \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS:bool=0FF \
-DCMAKE_POSITION_INDEPENDENT_CODE:bool=0N; \

$ (MAKE))

the compiler and other settings having been set as Make variables by an R makefile included
by INSTALL before src/Makevars.

A complication is that on macOS cmake (where installed) is commonly not on the path but
at /Applications/CMake.app/Contents/bin/cmake. One way to work around this is for the
package’s configure script to include

if test -z "$CMAKE"; then CMAKE="‘which cmake‘"; fi
if test -z "$CMAKE"; then CMAKE=/Applications/CMake.app/Contents/bin/cmake; fi
if test -f "$CMAKE"; then echo "no ’cmake’ command found"; exit 1; fi

and for the second approach to substitute CMAKE into src/Makevars. This also applies to the
ancillary command ctest, if used.

1.3 Checking and building packages

Before using these tools, please check that your package can be installed. R CMD check will inter
alia do this, but you may get more detailed error messages doing the install directly.

If your package specifies an encoding in its DESCRIPTION file, you should run these tools in a
locale which makes use of that encoding: they may not work at all or may work incorrectly in
other locales (although UTF-8 locales will most likely work).

Note: R CMD check and R CMD build run R processes with -—vanilla in which none
of the user’s startup files are read. If you need R_LIBS set (to find packages in
a non-standard library) you can set it in the environment: also you can use the
check and build environment files (as specified by the environment variables R_
CHECK_ENVIRON and R_BUILD_ENVIRON; if unset, files®® ~/.R/check.Renviron and
~/.R/build.Renviron are used) to set environment variables when using these
utilities.

Note to Windows users: R CMD build may make use of the Windows toolset (see
Section “The Windows toolset” in R Installation and Administration) if present and
in your path, and it is required for packages which need it to install (including those
with configure.win, cleanup.win, configure.ucrt or cleanup.ucrt scripts or a
src directory) and e.g. need vignettes built.

You may need to set the environment variable TMPDIR to point to a suitable writable
directory with a path not containing spaces — use forward slashes for the separators.
Also, the directory needs to be on a case-honouring file system (some network-
mounted file systems are not).

55

22 On systems which use sub-architectures, architecture-specific versions such as “/.R/check.Renviron.x64 take
precedence.

Chapter 1: Creating R packages 40

1.3.1 Checking packages

Using R CMD check, the R package checker, one can test whether source R packages work correctly.
It can be run on one or more directories, or compressed package tar archives with extension
.tar.gz, .tgz, .tar.bz2 or .tar.xz.

It is strongly recommended that the final checks are run on a tar archive prepared by R CMD

build.

1.

10.

This runs a series of checks, including

The package is installed. This will warn about missing cross-references and duplicate aliases
in help files.

The file names are checked to be valid across file systems and supported operating system
platforms.

The files and directories are checked for sufficient permissions (Unix-alikes only).

. The files are checked for binary executables, using a suitable version of file if available®®.

(There may be rare false positives.)

The DESCRIPTION file is checked for completeness, and some of its entries for correctness.
Unless installation tests are skipped, checking is aborted if the package dependencies cannot
be resolved at run time. (You may need to set R_LIBS in the environment if dependent
packages are in a separate library tree.) One check is that the package name is not that of
a standard package, nor one of the defunct standard packages (‘ctest’, ‘eda’, ‘1gs’, ‘mle’,
‘modreg’, ‘mva’, ‘nls’, ‘stepfun’ and ‘ts’). Another check is that all packages mentioned
in library or requires or from which the NAMESPACE file imports or are called via :: or

:: are listed (in ‘Depends’, ‘Imports’, ‘Suggests’): this is not an exhaustive check of the

actual imports.

Available index information (in particular, for demos and vignettes) is checked for complet-
eness.

The package subdirectories are checked for suitable file names and for not being empty. The
checks on file names are controlled by the option —-check-subdirs=value. This defaults
to ‘default’, which runs the checks only if checking a tarball: the default can be overridden
by specifying the value as ‘yes’ or ‘no’. Further, the check on the src directory is only
run if the package does not contain a configure script (which corresponds to the value

‘yes-maybe’) and there is no src/Makefile or src/Makefile.in.

To allow a configure script to generate suitable files, files ending in ‘. in’ will be allowed in
the R directory.

A warning is given for directory names that look like R package check directories — many
packages have been submitted to CRAN containing these.

The R files are checked for syntax errors. Bytes which are non-ASCII are reported as
warnings, but these should be regarded as errors unless it is known that the package will
always be used in the same locale.

It is checked that the package can be loaded, first with the usual default packages and then
only with package base already loaded. It is checked that the namespace can be loaded in
an empty session with only the base namespace loaded. (Namespaces and packages can be
loaded very early in the session, before the default packages are available, so packages should
work then.)

The R files are checked for correct calls to 1ibrary.dynam. Package startup functions are
checked for correct argument lists and (incorrect) calls to functions which modify the search

56

A suitable file.exe is part of the Windows toolset: it checks for gfile if a suitable file is not found: the
latter is available in the OpenCSW collection for Solaris at https://www.opencsw.org/. The source repository
is http://ftp.astron.com/pub/file/.

https://www.opencsw.org/
http://ftp.astron.com/pub/file/

Chapter 1: Creating R packages 41

11.

12.

13.

14.

15.

16.

17.

18.

19.

path or inappropriately generate messages. The R code is checked for possible problems
using codetools (https://CRAN.R-project.org/package=codetools). In addition, it is
checked whether S3 methods have all the arguments of the corresponding generic, and
whether the final argument of replacement functions is called ‘value’. All foreign function
calls (.C, .Fortran, .Call and .External calls) are tested to see if they have a PACKAGE
argument, and if not, whether the appropriate DLL might be deduced from the namespace
of the package. Any other calls are reported. (The check is generous, and users may want
to supplement this by examining the output of tools: :checkFF ("mypkg", verbose=TRUE),
especially if the intention were to always use a PACKAGE argument)

The R4 files are checked for correct syntax and metadata, including the presence of the
mandatory fields (\name, \alias, \title and \description). The Rd name and title are
checked for being non-empty, and there is a check for missing cross-references (links).

A check is made for missing documentation entries, such as undocumented user-level objects
in the package.

Documentation for functions, data sets, and S4 classes is checked for consistency with the
corresponding code.

It is checked whether all function arguments given in \usage sections of Rd files are docum-
ented in the corresponding \arguments section.

The data directory is checked for non-ASCII characters and for the use of reasonable levels
of compression.

C, C++ and Fortran source and header files®” are tested for portable (LF-only) line endings.
If there is a Makefile or Makefile.in or Makevars or Makevars.in file under the src
directory, it is checked for portable line endings and the correct use of ‘$ (BLAS_LIBS)’ and
‘$ (LAPACK_LIBS)’

Compiled code is checked for symbols corresponding to functions which might terminate
R or write to stdout/stderr instead of the console. Note that the latter might give false
positives in that the symbols might be pulled in with external libraries and could never
be called. Windows®® users should note that the Fortran and C++ runtime libraries are
examples of such external libraries.

Some checks are made of the contents of the inst/doc directory. These always include
checking for files that look like leftovers, and if suitable tools (such as qpdf) are available,
checking that the PDF documentation is of minimal size.

The examples provided by the package’s documentation are run. (see Chapter 2 [Writing
R documentation files], page 83, for information on using \examples to create executable
example code.) If there is a file tests/Examples/pkg-Ex.Rout.save, the output of running
the examples is compared to that file.

Of course, released packages should be able to run at least their own examples. Each example
is run in a ‘clean’ environment (so earlier examples cannot be assumed to have been run),
and with the variables T and F redefined to generate an error unless they are set in the
example: See Section “Logical vectors” in An Introduction to R.

If the package sources contain a tests directory then the tests specified in that directory are
run. (Typically they will consist of a set of . R source files and target output files .Rout . save.)
Please note that the comparison will be done in the end user’s locale, so the target output files
should be ASCII if at all possible. (The command line option --test-dir=foo may be used
to specify tests in a non-standard location. For example, unusually slow tests could be placed
in inst/slowTests and then R CMD check —--test-dir=inst/slowTests would be used to

57
58

An exception is made for subdirectories with names starting ‘win’ or ‘Win’.

on most other platforms such runtime libraries are dynamic, but static libraries are currently used on Windows
because the toolchain is not a standard part of the OS.

https://CRAN.R-project.org/package=codetools

Chapter 1: Creating R packages 42

run them. Other names that have been suggested are, for example, inst/testWithOracle
for tests that require Oracle to be installed, inst/randomTests for tests which use random
values and may occasionally fail by chance, etc.)

20. The R code in package vignettes (see Section 1.4 [Writing package vignettes], page 45) is
executed, and the vignettes re-made from their sources as a check of completeness of the
sources (unless there is a ‘BuildVignettes’ field in the package’s DESCRIPTION file with a
false value). If there is a target output file .Rout.save in the vignette source directory, the
output from running the code in that vignette is compared with the target output file and
any differences are reported (but not recorded in the log file). (If the vignette sources are in
the deprecated location inst/doc, do mark such target output files to not be installed in
.Rinstignore.)

If there is an error®® in executing the R code in vignette foo.ext, a log file foo.ext.log is
created in the check directory. The vignettes are re-made in a copy of the package sources
in the vign_test subdirectory of the check directory, so for further information on errors
look in directory pkgname/vign_test/vignettes. (It is only retained if there are errors or
if environment variable _R_CHECK_CLEAN_VIGN_TEST_ is set to a false value.)

21. The PDF version of the package’s manual is created (to check that the Rd files can be
converted successfully). This needs ITEX and suitable fonts and IXTEX packages to be
installed. See Section “Making the manuals” in R Installation and Administration for further
details.

22. Optionally (including by R CMD check --as-cran) the HTML version of the manual is cre-
ated and checked for compliance with the HTML5 standard. This requires a recent version®®
of ‘HTML Tidy’, either on the path or at a location specified by environment variable
R_TIDYCMD. Up-to-date versions can be installed from http://binaries.html-tidy.org/.

All these tests are run with collation set to the C locale, and for the examples and tests with
environment variable LANGUAGE=en: this is to minimize differences between platforms.

Use R CMD check --help to obtain more information about the usage of the R package checker.
A subset of the checking steps can be selected by adding command-line options. It also allows
customization by setting environment variables _R_CHECK_x_ as described in Section “Tools” in
R Internals: a set of these customizations similar to those used by CRAN can be selected by
the option --as-cran (which works best if Internet access is available). Some Windows users
may need to set environment variable R_WIN_NO_JUNCTIONS to a non-empty value. The test of
cyclic declarations®in DESCRIPTION files needs repositories (including CRAN) set: do this in
~/.Rprofile, by e.g.
options(repos = c(CRAN="https://cran.r-project.org"))
One check customization which can be revealing is
_R_CHECK_CODETOOLS_PROFILE_="suppressLocalUnused=FALSE"

which reports unused local assignments. Not only does this point out computations which are
unnecessary because their results are unused, it also can uncover errors. (Two such are to intend
to update an object by assigning a value but mistype its name or assign in the wrong scope,
for example using <- where <<- was intended.) This can give false positives, most commonly
because of non-standard evaluation for formulae and because the intention is to return objects in
the environment of a function for later use.

%9 or if option --use-valgrind is used or environment variable _R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_ is set

to a true value or if there are differences from a target output file

60 for the most comprehensive checking this should be 5.8.0 or later: any for which tidy --version does not

report a version number will be too old — this includes the 2006 version shipped with macOS.

61 For example, in early 2014 gdata (https://CRAN.R-project.org/package=gdata) declared ‘Imports: gtools’

and gtools (https://CRAN.R-project.org/package=gtools) declared ‘Imports: gdata’.

http://binaries.html-tidy.org/
https://CRAN.R-project.org/package=gdata
https://CRAN.R-project.org/package=gtools

Chapter 1: Creating R packages 43

Complete checking of a package which contains a file README .md needs a reasonably current
version of pandoc installed: see https://pandoc.org/installing.html.

You do need to ensure that the package is checked in a suitable locale if it contains non-ASCII
characters. Such packages are likely to fail some of the checks in a C locale, and R CMD check
will warn if it spots the problem. You should be able to check any package in a UTF-8 locale
(if one is available). Beware that although a C locale is rarely used at a console, it may be the
default if logging in remotely or for batch jobs.

Often R CMD check will need to consult a CRAN repository to check details of uninstalled
packages. Normally this defaults to the CRAN main site, but a mirror can be specified by setting
environment variables R_CRAN_WEB and (rarely needed) R_CRAN_SRC to the URL of a CRAN
mirror.

It is possible to install a package and then check the installed package. To do so first install
the package and keep a log of the installation:

R CMD INSTALL -1 libdir pkg > pkg.log 2>&1
and then use
Rdev CMD check -1 libdir —--install=check:pkg.log pkg

(Specifying the library is required: it ensures that the just-installed package is the one checked.
If you know for sure only one copy is installed you can use -—install=skip: this is used for R
installation’s make check-recommended.)

1.3.2 Building package tarballs

Packages may be distributed in source form as “tarballs” (.tar.gz files) or in binary form.
The source form can be installed on all platforms with suitable tools and is the usual form for
Unix-like systems; the binary form is platform-specific, and is the more common distribution
form for the macOS and ‘x86_64’ Windows platforms.

Using R CMD build, the R package builder, one can build R package tarballs from their sources
(for example, for subsequent release). It is recommended that packages are built for release by
the current release version of R or ‘r-patched’, to avoid inadvertently picking up new features
of a development version of R.

Prior to actually building the package in the standard gzipped tar file format, a few diagnostic
checks and cleanups are performed. In particular, it is tested whether object indices exist and
can be assumed to be up-to-date, and C, C++ and Fortran source files and relevant makefiles in
a src directory are tested and converted to LF line-endings if necessary.

Run-time checks whether the package works correctly should be performed using R CMD check
prior to invoking the final build procedure.

To exclude files from being put into the package, one can specify a list of exclude patterns in
file .Rbuildignore in the top-level source directory. These patterns should be Perl-like regular
expressions (see the help for regexp in R for the precise details), one per line, to be matched
case-insensitively against the file and directory names relative to the top-level package source
directory. In addition, directories from source control systems®? or from eclipse®, directories
with names check, chm, or ending .Rcheck or 01d or old and files GNUMakefile®, Read-and-
delete-me or with base names starting with ‘.#’, or starting and ending with ‘#’, or ending in
7 ¢.bak’ or ‘.swp’, are excluded by default®®. In addition, same-package tarballs (from previous

62
63
64
65

called CVS or .svn or .arch-ids or .bzr or .git (but not files called .git) or .hg.
called .metadata.
which is an error: GNU make uses GNUmakefile.

see tools:::.hidden_file_exclusions and tools:::get_exclude_patterns() for further excluded files and
file patterns, respectively.

https://pandoc.org/installing.html

Chapter 1: Creating R packages 44

builds) and their binary forms will be excluded from the top-level directory, as well as those files
in the R, demo and man directories which are flagged by R CMD check as having invalid names.

Use R CMD build --help to obtain more information about the usage of the R package builder.

Unless R CMD build is invoked with the --no-build-vignettes option (or the package’s
DESCRIPTION contains ‘BuildVignettes: no’ or similar), it will attempt to (re)build the vignettes
(see Section 1.4 [Writing package vignettes], page 45) in the package. To do so it installs the
current package into a temporary library tree, but any dependent packages need to be installed
in an available library tree (see the Note: at the top of this section).

Similarly, if the .Rd documentation files contain any \Sexpr macros (see Section 2.12 [Dynamic
pages], page 97), the package will be temporarily installed to execute them. Post-execution
binary copies of those pages containing build-time macros will be saved in build/partial.rdb.
If there are any install-time or render-time macros, a .pdf version of the package manual will be
built and installed in the build subdirectory. (This allows CRAN or other repositories to display
the manual even if they are unable to install the package.) This can be suppressed by the option
--no-manual or if package’s DESCRIPTION contains ‘BuildManual: no’ or similar.

One of the checks that R CMD build runs is for empty source directories. These are in most
(but not all) cases unintentional, if they are intentional use the option -—keep-empty-dirs (or set
the environment variable _R_BUILD_KEEP_EMPTY_DIRS_ to ‘TRUE’, or have a ‘BuildKeepEmpty’
field with a true value in the DESCRIPTION file).

The --resave-data option allows saved images (.rda and .RData files) in the data directory
to be optimized for size. It will also compress tabular files and convert .R files to saved images.
It can take values no, gzip (the default if this option is not supplied, which can be changed by
setting the environment variable _R_BUILD_RESAVE_DATA_) and best (equivalent to giving it
without a value), which chooses the most effective compression. Using best adds a dependence
on R (>=2.10) to the DESCRIPTION file if bzip2 or xz compression is selected for any of the
files. If this is thought undesirable, --resave-data=gzip (which is the default if that option is
not supplied) will do what compression it can with gzip. A package can control how its data
is resaved by supplying a ‘BuildResaveData’ field (with one of the values given earlier in this
paragraph) in its DESCRIPTION file.

The --compact-vignettes option will run tools::compactPDF over the PDF files in
inst/doc (and its subdirectories) to losslessly compress them. This is not enabled by def-
ault (it can be selected by environment variable _R_BUILD_COMPACT_VIGNETTES_) and needs
qpdf (https://qpdf.sourceforge.io/) to be available.

It can be useful to run R CMD check --check-subdirs=yes on the built tarball as a final
check on the contents.

Where a non-POSIX file system is in use which does not utilize execute permissions, some
care is needed with permissions. This applies on Windows and to e.g. FAT-formatted drives and
SMB-mounted file systems on other OSes. The ‘mode’ of the file recorded in the tarball will be
whatever file.info () returns. On Windows this will record only directories as having execute
permission and on other OSes it is likely that all files have reported ‘mode’ 0777. A particular
issue is packages being built on Windows which are intended to contain executable scripts such as
configure and cleanup: R CMD build ensures those two are recorded with execute permission.

Directory build of the package sources is reserved for use by R CMD build: it contains
information which may not easily be created when the package is installed, including index
information on the vignettes and, rarely, information on the help pages and perhaps a copy of
the PDF reference manual (see above).

1.3.3 Building binary packages

Binary packages are compressed copies of installed versions of packages. They contain compiled
shared libraries rather than C, C++ or Fortran source code, and the R functions are included

https://qpdf.sourceforge.io/

Chapter 1: Creating R packages 45

in their installed form. The format and filename are platform-specific; for example, a binary
package for Windows is usually supplied as a .zip file, and for the macOS platform the default
binary package file extension is .tgz.

The recommended method of building binary packages is to use
R CMD INSTALL --build pkg

where pkg is either the name of a source tarball (in the usual .tar.gz format) or the location of
the directory of the package source to be built. This operates by first installing the package and
then packing the installed binaries into the appropriate binary package file for the particular
platform.

By default, R CMD INSTALL --build will attempt to install the package into the default library
tree for the local installation of R. This has two implications:

e If the installation is successful, it will overwrite any existing installation of the same package.

e The default library tree must have write permission; if not, the package will not install and
the binary will not be created.

To prevent changes to the present working installation or to provide an install location with
write access, create a suitably located directory with write access and use the -1 option to build
the package in the chosen location. The usage is then

R CMD INSTALL -1 location --build pkg

where location is the chosen directory with write access. The package will be installed as a
subdirectory of location, and the package binary will be created in the current directory.

Other options for R CMD INSTALL can be found using R CMD INSTALL --help, and platform-
specific details for special cases are discussed in the platform-specific FAQs.

Finally, at least one web-based service is available for building binary packages from (checked)
source code: WinBuilder (see https://win-builder.R-project.org/) is able to build ‘x86_64’
Windows binaries. Note that this is intended for developers on other platforms who do not have
access to Windows but wish to provide binaries for the Windows platform.

1.4 Writing package vignettes

In addition to the help files in Rd format, R packages allow the inclusion of documents in arbitrary
other formats. The standard location for these is subdirectory inst/doc of a source package, the
contents will be copied to subdirectory doc when the package is installed. Pointers from package
help indices to the installed documents are automatically created. Documents in inst/doc can
be in arbitrary format, however we strongly recommend providing them in PDF format, so
users on almost all platforms can easily read them. To ensure that they can be accessed from a
browser (as an HTML index is provided), the file names should start with an ASCII letter and be
comprised entirely of ASCII letters or digits or hyphen or underscore.

A special case is package vignettes. Vignettes are documents in PDF or HTML format obtained
from plain-text literate source files from which R knows how to extract R code and create output
(in PDF/HTML or intermediate IXTEX). Vignette engines do this work, using “tangle” and
“weave” functions respectively. Sweave, provided by the R distribution, is the default engine.
Other vignette engines besides Sweave are supported; see Section 1.4.2 [Non-Sweave vignettes],
page 48.

Package vignettes have their sources in subdirectory vignettes of the package sources. Note
that the location of the vignette sources only affects R CMD build and R CMD check: the tarball
built by R CMD build includes in inst/doc the components intended to be installed.

Sweave vignette sources are normally given the file extension .Rnw or .Rtex, but for historical
reasons extensions®® .Snw and .Stex are also recognized. Sweave allows the integration of INTEX

66 and to avoid problems with case-insensitive file systems, lower-case versions of all these extensions.

https://win-builder.R-project.org/

Chapter 1: Creating R packages 46

documents: see the Sweave help page in R and the Sweave vignette in package utils for details
on the source document format.

Package vignettes are tested by R CMD check by executing all R code chunks they contain
(except those marked for non-evaluation, e.g., with option eval=FALSE for Sweave). The R
working directory for all vignette tests in R CMD check is a copy of the vignette source directory.
Make sure all files needed to run the R code in the vignette (data sets, ...) are accessible
by either placing them in the inst/doc hierarchy of the source package or by using calls to
system.file(). All other files needed to re-make the vignettes (such as INTEX style files, BibTEX
input files and files for any figures not created by running the code in the vignette) must be in
the vignette source directory. R CMD check will check that vignette production has succeeded by
comparing modification times of output files in inst/doc with the source in vignettes.

R CMD build will automatically” create the (PDF or HTML versions of the) vignettes in
inst/doc for distribution with the package sources. By including the vignette outputs in the
package sources it is not necessary that these can be re-built at install time, i.e., the package
author can use private R packages, screen snapshots and EIEX extensions which are only available
on their machine.%®

By default R CMD build will run Sweave on all Sweave vignette source files in vignettes. If

Makefile is found in the vignette source directory, then R CMD build will try to run make after
the Sweave runs, otherwise texi2pdf is run on each .tex file produced.

The first target in the Makefile should take care of both creation of PDF/HTML files and
cleaning up afterwards (including after Sweave), i.e., delete all files that shall not appear in the
final package archive. Note that if the make step runs R it needs to be careful to respect the
environment values of R_LIBS and R_HOME®®. Finally, if there is a Makefile and it has a ‘clean:’
target, make clean is run.

All the usual caveats about including a Makefile apply. It must be portable (no GNU
extensions), use LF line endings and must work correctly with a parallel make: too many authors
have written things like

BAD EXAMPLE
all: pdf clean

pdf: ABC-intro.pdf ABC-details.pdf

hopdf: h.tex
texi2dvi --pdf $x

clean:
rm *.tex ABC-details-*.pdf

which will start removing the source files whilst pdflatex is working.

Metadata lines can be placed in the source file, preferably in INTEX comments in the preamble.
One such is a \VignetteIndexEntry of the form

%\VignetteIndexEntry{Using Animal}

Others you may see are \VignettePackage (currently ignored), \VignetteDepends
(a comma-separated list of package names) and \VignetteKeyword (which replaced
\VignetteKeywords). These are processed at package installation time to create the saved

67
68

unless inhibited by using ‘BuildVignettes: no’ in the DESCRIPTION file.
provided the conditions of the package’s license are met: many, including CRAN, see the omission of source
components as incompatible with an Open Source license.

R_HOME/bin is prepended to the PATH so that references to R or Rscript in the Makefile do make use of the
currently running version of R.

69

Chapter 1: Creating R packages 47

data frame Meta/vignette.rds. The \VignetteEngine statement is described in Section 1.4.2
[Non-Sweave vignettes], page 48. Vignette metadata can be extracted from a source file using
tools::vignettelnfo.

At install time an HTML index for all vignettes in the package is automatically created from the
\VignetteIndexEntry statements unless a file index.html exists in directory inst/doc. This in-
dex is linked from the HTML help index for the package. If you do supply a inst/doc/index.html
file it should contain relative links only to files under the installed doc directory, or perhaps
(not really an index) to HTML help files or to the DESCRIPTION file, and be valid HTML as con-
firmed via the W3C Markup Validation Service (https://validator.w3.org) or Validator.nu
(https://validator.nu/).

Sweave/Stangle allows the document to specify the split=TRUE option to create a single R
file for each code chunk: this will not work for vignettes where it is assumed that each vignette
source generates a single file with the vignette extension replaced by .R.

Do watch that PDF's are not too large — one in a CRAN package was 72MB! This is usually
caused by the inclusion of overly detailed figures, which will not render well in PDF viewers.
Sometimes it is much better to generate fairly high resolution bitmap (PNG, JPEG) figures and
include those in the PDF document.

When R CMD build builds the vignettes, it copies these and the vignette sources from directory
vignettes to inst/doc. To install any other files from the vignettes directory, include a file
vignettes/.install_extras which specifies these as Perl-like regular expressions on one or
more lines. (See the description of the .Rinstignore file for full details.)

1.4.1 Encodings and vignettes

Vignettes will in general include descriptive text, R input, R output and figures, I¥TEX include
files and bibliographic references. As any of these may contain non-ASCII characters, the handling
of encodings can become very complicated.

The vignette source file should be written in ASCII or contain a declaration of the encoding
(see below). This applies even to comments within the source file, since vignette engines process
comments to look for options and metadata lines. When an engine’s weave and tangle functions
are called on the vignette source, it will be converted to the encoding of the current R session.

Stangle() will produce an R code file in the current locale’s encoding: for a non-ASCII
vignette what that is is recorded in a comment at the top of the file.

Sweave () will produce a .tex file in the current encoding, or in UTF-8 if that is declared.
Non-ASCII encodings need to be declared to XTEX via a line like

\usepackage [utf8] {inputenc}
(It is also possible to use the more recent ‘inputenx’ IATEX package.) For files where this line
is not needed (e.g. chapters included within the body of a larger document, or non-Sweave
vignettes), the encoding may be declared using a comment like

%\VignetteEncoding{UTF-83}
If the encoding is UTF-8, this can also be declared using the declaration

%\SweaveUTF8

If no declaration is given in the vignette, it will be assumed to be in the encoding declared for
the package. If there is no encoding declared in either place, then it is an error to use non-ASCII
characters in the vignette.

In any case, be aware that IXTEX may require the ‘usepackage’ declaration.

Sweave () will also parse and evaluate the R code in each chunk. The R output will also be in
the current locale (or UTF-8 if so declared), and should be covered by the ‘inputenc’ declaration.
One thing people often forget is that the R output may not be ASCII even for ASCIIT R sources,

https://validator.w3.org
https://validator.nu/
https://validator.nu/

Chapter 1: Creating R packages 48

for many possible reasons. One common one is the use of ‘fancy’ quotes: see the R help on
sQuote: note carefully that it is not portable to declare UTF-8 or CP1252 to cover such quotes,
as their encoding will depend on the locale used to run Sweave (): this can be circumvented by
setting options(useFancyQuotes="UTF-8") in the vignette.

The final issue is the encoding of figures — this applies only to PDF figures and not PNG
etc. The PDF figures will contain declarations for their encoding, but the Sweave option
pdf .encoding may need to be set appropriately: see the help for the pdf () graphics device.

As a real example of the complexities, consider the fortunes (https://CRAN.R-project.org/
package=fortunes) package version ‘1.4-0’. That package did not have a declared encoding,
and its vignette was in ASCII. However, the data it displays are read from a UTF-8 CSV file
and will be assumed to be in the current encoding, so fortunes.tex will be in UTF-8 in any
locale. Had read.table been told the data were UTF-8, fortunes.tex would have been in the
locale’s encoding.

1.4.2 Non-Sweave vignettes

Vignettes in formats other than Sweave are supported via “vignette engines”. For example knitr
(https://CRAN.R-project.org/package=knitr) version 1.1 or later can create .tex files from
a variation on Sweave format, and .html files from a variation on “markdown” format. These
engines replace the Sweave () function with other functions to convert vignette source files into
IXTEX files for processing into .pdf, or directly into .pdf or .html files. The Stangle () function
is replaced with a function that extracts the R source from a vignette.

R recognizes non-Sweave vignettes using filename extensions specified by the engine. For
example, the knitr (https://CRAN.R-project.org/package=knitr) package supports the ext-
ension .Rmd (standing for “R markdown”). The user indicates the vignette engine within the
vignette source using a \VignetteEngine line, for example

%\VignetteEngine{knitr: :knitr}

This specifies the name of a package and an engine to use in place of Sweave in processing the
vignette. As Sweave is the only engine supplied with the R distribution, the package providing
any other engine must be specified in the ‘VignetteBuilder’ field of the package DESCRIPTION
file, and also specified in the ‘Suggests’, ‘Imports’ or ‘Depends’ field (since its namespace must
be available to build or check your package). If more than one package is specified as a builder,
they will be searched in the order given there. The utils package is always implicitly appended
to the list of builder packages, but may be included earlier to change the search order.

Note that a package with non-Sweave vignettes should always have a ‘VignetteBuilder’ field
in the DESCRIPTION file, since this is how R CMD check recognizes that there are vignettes to be
checked: packages listed there are required when the package is checked.

The vignette engine can produce .tex, .pdf, or .html files as output. If it produces .tex
files, R will call texi2pdf to convert them to .pdf for display to the user (unless there is a
Makefile in the vignettes directory).

Package writers who would like to supply vignette engines need to register those engines in
the package .onLoad function. For example, that function could make the call

tools::vignetteEngine("knitr", weave = vweave, tangle = vtangle,
pattern = "[.]Rmd$", package = "knitr")

(The actual registration in knitr (https://CRAN.R-project.org/package=knitr) is more
complicated, because it supports other input formats.) See the ?tools::vignetteEngine
help topic for details on engine registration.

https://CRAN.R-project.org/package=fortunes
https://CRAN.R-project.org/package=fortunes
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=knitr

Chapter 1: Creating R packages 49

1.5 Package namespaces

R has a namespace management system for code in packages. This system allows the package
writer to specify which variables in the package should be ezported to make them available to
package users, and which variables should be imported from other packages.

The namespace for a package is specified by the NAMESPACE file in the top level package
directory. This file contains namespace directives describing the imports and exports of the
namespace. Additional directives register any shared objects to be loaded and any S3-style
methods that are provided. Note that although the file looks like R code (and often has R-style
comments) it is not processed as R code. Only very simple conditional processing of if statements
is implemented.

Packages are loaded and attached to the search path by calling library or require. Only the
exported variables are placed in the attached frame. Loading a package that imports variables
from other packages will cause these other packages to be loaded as well (unless they have already
been loaded), but they will not be placed on the search path by these implicit loads. Thus code
in the package can only depend on objects in its own namespace and its imports (including the
base namespace) being visible™.

Namespaces are sealed once they are loaded. Sealing means that imports and exports cannot
be changed and that internal variable bindings cannot be changed. Sealing allows a simpler
implementation strategy for the namespace mechanism and allows code analysis and compilation
tools to accurately identify the definition corresponding to a global variable reference in a function
body.

The namespace controls the search strategy for variables used by functions in the package.
If not found locally, R searches the package namespace first, then the imports, then the base
namespace and then the normal search path (so the base namespace precedes the normal search
rather than being at the end of it).

1.5.1 Specifying imports and exports

Exports are specified using the export directive in the NAMESPACE file. A directive of the form
export(f, g)

specifies that the variables £ and g are to be exported. (Note that variable names may be quoted,

and reserved words and non-standard names such as [<-.fractions must be.)

For packages with many variables to export it may be more convenient to specify the names
to export with a regular expression using exportPattern. The directive

exportPattern("~[~.]1")

exports all variables that do not start with a period. However, such broad patterns are not
recommended for production code: it is better to list all exports or use narrowly-defined
groups. (This pattern applies to S4 classes.) Beware of patterns which include names starting
with a period: some of these are internal-only variables and should never be exported, e.g.
‘.__S3MethodsTable__. (and loading excludes known cases).

Packages implicitly import the base namespace. Variables exported from other packages with
namespaces need to be imported explicitly using the directives import and importFrom. The
import directive imports all exported variables from the specified package(s). Thus the directives

import (foo, bar)
specifies that all exported variables in the packages foo and bar are to be imported. If only
some of the exported variables from a package are needed, then they can be imported using
importFrom. The directive

importFrom(foo, f, g)

70 Note that lazy-loaded datasets are not in the package’s namespace so need to be accessed wvia ::, e.g.
survival::survexp.us.

Chapter 1: Creating R packages 50

specifies that the exported variables £ and g of the package foo are to be imported. Using
importFrom selectively rather than import is good practice and recommended notably when
importing from packages with more than a dozen exports and especially from those written by
others (so what they export can change in future).

To import every symbol from a package but for a few exceptions, pass the except argument
to import. The directive

import (foo, except=c(bar, baz))
imports every symbol from foo except bar and baz. The value of except should evaluate to
something coercible to a character vector, after substituting each symbol for its corresponding
string.
It is possible to export variables from a namespace which it has imported from other name-
spaces: this has to be done explicitly and not via exportPattern.

If a package only needs a few objects from another package it can use a fully qualified variable
reference in the code instead of a formal import. A fully-qualified reference to the function f in
package foo is of the form foo::f. This is slightly less efficient than a formal import and also
loses the advantage of recording all dependencies in the NAMESPACE file (but they still need to
be recorded in the DESCRIPTION file). Evaluating foo::f will cause package foo to be loaded,
but not attached, if it was not loaded already—this can be an advantage in delaying the loading
of a rarely used package. However, if foo is listed only in ‘Suggests’ or ‘Enhances’ this also
delays the check that it is installed: it is good practice to use such imports conditionally (e.g. via
requireNamespace ("foo", quietly = TRUE)).

Using the foo: :f form will be necessary when a package needs to use a function of the same
name from more than one namespace.

Using foo:::f instead of foo::f allows access to unexported objects. This is generally
not recommended, as the existence or semantics of unexported objects may be changed by the
package author in routine maintenance.

1.5.2 Registering S3 methods

The standard method for S3-style UseMethod dispatching might fail to locate methods defined
in a package that is imported but not attached to the search path. To ensure that these methods
are available the packages defining the methods should ensure that the generics are imported
and register the methods using S3method directives. If a package defines a function print.foo
intended to be used as a print method for class foo, then the directive
S3method (print, foo)
ensures that the method is registered and available for UseMethod dispatch, and the function
print.foo does not need to be exported. Since the generic print is defined in base it does not
need to be imported explicitly.
(Note that function and class names may be quoted, and reserved words and non-standard
names such as [<- and function must be.)
It is possible to specify a third argument to S3method, the function to be used as the method,
for example
S3method (print, check_so_symbols, .print.via.format)
when print.check_so_symbols is not needed.
As from R 3.6.0 one can also use S3method () directives to perform delayed registration. With
if (getRversion() >= "3.6.0") {
S3method (pkg: :gen, cls)
}
function gen.cls will get registered as an S3 method for class cls and generic gen from package
pkg only when the namespace of pkg is loaded. This can be employed to deal with situations

Chapter 1: Creating R packages 51

where the method is not “immediately” needed, and having to pre-load the namespace of pkg
(and all its strong dependencies) in order to perform immediate registration is considered too
onerous.

1.5.3 Load hooks

There are a number of hooks called as packages are loaded, attached, detached, and unloaded.
See help(".onLoad") for more details.

Since loading and attaching are distinct operations, separate hooks are provided for each.
These hook functions are called .onLoad and .onAttach. They both take arguments™ 1ibname
and pkgname; they should be defined in the namespace but not exported.

Packages can use a .onDetach or .Last.1lib function (provided the latter is exported from
the namespace) when detach is called on the package. It is called with a single argument, the
full path to the installed package. There is also a hook .onUnload which is called when the
namespace is unloaded (via a call to unloadNamespace, perhaps called by detach(unload =
TRUE)) with argument the full path to the installed package’s directory. Functions .onUnload
and .onDetach should be defined in the namespace and not exported, but .Last.lib does need
to be exported.

Packages are not likely to need .onAttach (except perhaps for a start-up banner); code to
set options and load shared objects should be placed in a .onLoad function, or use made of the
useDynLib directive described next.

User-level hooks are also available: see the help on function setHook.

These hooks are often used incorrectly. People forget to export .Last.lib. Compiled code
should be loaded in .onLoad (or via a useDynLb directive: see below) and unloaded in .onUnload.
Do remember that a package’s namespace can be loaded without the namespace being attached
(e.g. by pkgname: : fun) and that a package can be detached and re-attached whilst its namespace
remains loaded.

It is good practice for these functions to be quiet. Any messages should use
packageStartupMessage so users (include check scripts) can suppress them if desired.

1.5.4 useDynLib

A NAMESPACE file can contain one or more useDynLib directives which allows shared objects that
need to be loaded.” The directive

useDynLib(foo0)

registers the shared object foo™ for loading with 1ibrary.dynam. Loading of registered object(s)
occurs after the package code has been loaded and before running the load hook function. Packages
that would only need a load hook function to load a shared object can use the useDynLib directive
instead.

The useDynLib directive also accepts the names of the native routines that are to be used in
R wvia the .C, .Call, .Fortran and .External interface functions. These are given as additional
arguments to the directive, for example,

useDynLib(foo, myRoutine, myOtherRoutine)

By specifying these names in the useDynLib directive, the native symbols are resolved when
the package is loaded and R variables identifying these symbols are added to the package’s
namespace with these names. These can be used in the .C, .Call, .Fortran and .External

1 they will be called with two unnamed arguments, in that order.
72 NB: this will only be read in all versions of R if the package contains R code in a R directory.

73 Note that this is the basename of the shared object, and the appropriate extension (.so or .d1l) will be
added.

Chapter 1: Creating R packages 52

calls in place of the name of the routine and the PACKAGE argument. For instance, we can call
the routine myRoutine from R with the code

.Call(myRoutine, x, y)
rather than
.Call("myRoutine", x, y, PACKAGE = "foo")

There are at least two benefits to this approach. Firstly, the symbol lookup is done just
once for each symbol rather than each time the routine is invoked. Secondly, this removes any
ambiguity in resolving symbols that might be present in more than one DLL. However, this
approach is nowadays deprecated in favour of supplying registration information (see below).

In some circumstances, there will already be an R variable in the package with the same name
as a native symbol. For example, we may have an R function in the package named myRoutine.
In this case, it is necessary to map the native symbol to a different R variable name. This can be
done in the useDynLib directive by using named arguments. For instance, to map the native
symbol name myRoutine to the R variable myRoutine_sym, we would use

useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)
We could then call that routine from R using the command
.Call(myRoutine_sym, x, y)
Symbols without explicit names are assigned to the R variable with that name.

In some cases, it may be preferable not to create R variables in the package’s namespace that
identify the native routines. It may be too costly to compute these for many routines when the
package is loaded if many of these routines are not likely to be used. In this case, one can still
perform the symbol resolution correctly using the DLL, but do this each time the routine is called.
Given a reference to the DLL as an R variable, say d11, we can call the routine myRoutine using
the expression

.Call(dll$myRoutine, x, y)

The $ operator resolves the routine with the given name in the DLL using a call to
getNativeSymbol. This is the same computation as above where we resolve the symbol when the
package is loaded. The only difference is that this is done each time in the case of d11$myRoutine.

In order to use this dynamic approach (e.g., d11$myRoutine), one needs the reference to
the DLL as an R variable in the package. The DLL can be assigned to a variable by using the
variable = d11Name format used above for mapping symbols to R variables. For example, if we
wanted to assign the DLL reference for the DLL foo in the example above to the variable myDLL,
we would use the following directive in the NAMESPACE file:

myDLL = useDynLib(foo, myRoutine_sym = myRoutine, myOtherRoutine)

Then, the R variable myDLL is in the package’s namespace and available for calls such as
myDLL$dynRoutine to access routines that are not explicitly resolved at load time.

If the package has registration information (see Section 5.4 [Registering native routines],
page 129), then we can use that directly rather than specifying the list of symbols again in
the useDynLib directive in the NAMESPACE file. Each routine in the registration information
is specified by giving a name by which the routine is to be specified along with the address
of the routine and any information about the number and type of the parameters. Using the
.registration argument of useDynLib, we can instruct the namespace mechanism to create R
variables for these symbols. For example, suppose we have the following registration information
for a DLL named myDLL:

static R_NativePrimitiveArgType foo_t[] = {
REALSXP, INTSXP, STRSXP, LGLSXP
s

Chapter 1: Creating R packages 53

static const R_CMethodDef cMethods[] = {
{"foo", (DL_FUNC) &foo, 4, foo_t},
{"bar_sym", (DL_FUNC) &bar, O},
{NULL, NULL, O, NULL}

};

static const R_CallMethodDef callMethods[] = {
{"R_call_sym", (DL_FUNC) &R_call, 4},
{"R_version_sym", (DL_FUNC) &R_version, O},
{NULL, NULL, O}

};

Then, the directive in the NAMESPACE file
useDynLib(myDLL, .registration = TRUE)

causes the DLL to be loaded and also for the R variables foo, bar_sym, R_call_sym and
R_version_sym to be defined in the package’s namespace.

Note that the names for the R variables are taken from the entry in the registration information
and do not need to be the same as the name of the native routine. This allows the creator of the
registration information to map the native symbols to non-conflicting variable names in R, e.g.
R_version to R_version_sym for use in an R function such as

R_version <- function()

{
.Call(R_version_sym)

}

Using argument .fixes allows an automatic prefix to be added to the registered symbols,
which can be useful when working with an existing package. For example, package KernSmooth
(https://CRAN.R-project.org/package=KernSmooth) has

useDynLib(KernSmooth, .registration = TRUE, .fixes = "F_")

which makes the R variables corresponding to the Fortran symbols F_bkde and so on, and so
avoid clashes with R code in the namespace.

NB: Using these arguments for a package which does not register native symbols merely slows
down the package loading (although many CRAN packages have done so). Once symbols are
registered, check that the corresponding R variables are not accidentally exported by a pattern
in the NAMESPACE file.

1.5.5 An example

As an example consider two packages named foo and bar. The R code for package foo in file
foo.R is

x <=1

f <- function(y) c(x,y)

foo <- function(x) .Call("foo", x, PACKAGE="foo")
print.foo <- function(x, ...) cat("<a foo>\n")

Some C code defines a C function compiled into DLL foo (with an appropriate extension). The
NAMESPACE file for this package is

https://CRAN.R-project.org/package=KernSmooth
https://CRAN.R-project.org/package=KernSmooth

Chapter 1: Creating R packages 54

useDynLib(foo0)
export(f, foo)
S3method (print, foo)

The second package bar has code file bar.R

¢ <~ function(...) sum(...)
g <- function(y) f(c(y, 7))
h <- function(y) y+9

and NAMESPACE file

import (foo)
export(g, h)

Calling library(bar) loads bar and attaches its exports to the search path. Package foo is also
loaded but not attached to the search path. A call to g produces

> g(6)
(1] 1 13

This is consistent with the definitions of ¢ in the two settings: in bar the function c is defined to
be equivalent to sum, but in foo the variable c refers to the standard function c in base.

1.5.6 Namespaces with S4 classes and methods

Some additional steps are needed for packages which make use of formal (S4-style) classes and
methods (unless these are purely used internally). The package should have Depends: methods™
in its DESCRIPTION and import(methods) or importFrom(methods, ...) plus any classes and
methods which are to be exported need to be declared in the NAMESPACE file. For example, the
stats4 package has

export(mle) # exporting methods implicitly exports the generic
importFrom("stats", approx, optim, pchisq, predict, qchisq, gnorm, spline)
For these, we define methods or (AIC, BIC, nobs) an implicit generic:
importFrom("stats", AIC, BIC, coef, confint, logLik, nobs, profile,

update, vcov)
exportClasses(mle, profile.mle, summary.mle)
All methods for imported generics:
exportMethods(coef, confint, logLik, plot, profile, summary,

show, update, vcov)

implicit generics which do not have any methods here
export (AIC, BIC, nobs)

All S4 classes to be used outside the package need to be listed in an exportClasses direct-
ive. Alternatively, they can be specified using exportClassPattern’™ in the same style as
for exportPattern. To export methods for generics from other packages an exportMethods
directive can be used.

& Imports: methods may suffice, but package code is little exercised without the methods package on the search
path and may not be fully robust to this scenario.

™ This defaults to the same pattern as exportPattern: use something like exportClassPattern("~$") to
override this.

Chapter 1: Creating R packages 55

Note that exporting methods on a generic in the namespace will also export the generic, and
exporting a generic in the namespace will also export its methods. If the generic function is
not local to this package, either because it was imported as a generic function or because the
non-generic version has been made generic solely to add S4 methods to it (as for functions such as
coef in the example above), it can be declared via either or both of export or exportMethods,
but the latter is clearer (and is used in the stats4 example above). In particular, for primitive
functions there is no generic function, so export would export the primitive, which makes no
sense. On the other hand, if the generic is local to this package, it is more natural to export the
function itself using export (), and this must be done if an implicit generic is created without
setting any methods for it (as is the case for AIC in stats4).

A non-local generic function is only exported to ensure that calls to the function will dispatch
the methods from this package (and that is not done or required when the methods are for
primitive functions). For this reason, you do not need to document such implicitly created generic
functions, and undoc in package tools will not report them.

If a package uses S4 classes and methods exported from another package, but does not import
the entire namespace of the other package, it needs to import the classes and methods explicitly,
with directives

importClassesFrom(package, ...)
importMethodsFrom(package, ...)

listing the classes and functions with methods respectively. Suppose we had two small packages
A and B with B using A. Then they could have NAMESPACE files

export(f1, ngl)
exportMethods (" [")
exportClasses(cl)

and
-
importFrom(A, ngl)
importClassesFrom(A, c1)
importMethodsFrom(A, f1)
export (f4, f£5)
exportMethods (£f6, "[")
exportClasses(cl, c2)
- /
respectively.

Note that importMethodsFrom will also import any generics defined in the namespace on
those methods.

It is important if you export S4 methods that the corresponding generics are available. You
may for example need to import coef from stats to make visible a function to be converted into
its implicit generic. But it is better practice to make use of the generics exported by stats4 as
this enables multiple packages to unambiguously set methods on those generics.

1.6 Writing portable packages

This section contains advice on writing packages to be used on multiple platforms or for
distribution (for example to be submitted to a package repository such as CRAN).

76 if it does, there will be opaque warnings about replacing imports if the classes/methods are also imported.

Chapter 1: Creating R packages 56

Portable packages should have simple file names: use only alphanumeric ASCII characters
and period (.), and avoid those names not allowed under Windows (see Section 1.1 [Package
structure|, page 3).

Many of the graphics devices are platform-specific: even X11() (aka x11()) which although
emulated on Windows may not be available on a Unix-alike (and is not the preferred screen
device on OS X). It is rarely necessary for package code or examples to open a new device, but if
essential,”” use dev.new().

Use R CMD build to make the release .tar.gz file.

R CMD check provides a basic set of checks, but often further problems emerge when people
try to install and use packages submitted to CRAN — many of these involve compiled code. Here
are some further checks that you can do to make your package more portable.

e If your package has a configure script, provide a configure.win or configure.ucrt script
to be used on Windows (an empty configure.win file if no actions are needed).

e If your package has a Makevars or Makefile file, make sure that you use only por-
table make features. Such files should be LF-terminated™ (including the final line of
the file) and not make use of GNU extensions. (The POSIX specification is avail-
able at https://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html;
anything not documented there should be regarded as an extension to be avoided. Further
advice can be found at https://www.gnu.org/software/autoconf/manual/autoconf.
html#Portable-Make.) Commonly misused GNU extensions are conditional inclusions
(ifeq and the like), ${shell ...}, ${wildcard ...} and similar, and the use of +=" and
:=. Also, the use of $< other than in implicit rules is a GNU extension, as is the $~ macro.
As is the use of .PHONY (some other makes ignore it). Unfortunately makefiles which use
GNU extensions often run on other platforms but do not have the intended results.

Note that the -C flag for make is not included in the POSIX specification and is not
implemented by some of the makes which have been used with R. However, it is more
commonly implemented (e.g. by FreeBSD make) than the GNU-specific -~-directory=.

You should not rely on built-in/default make rules, even when specified by POSIX, as some
makes do not have the POSIX ones and others have altered them.

The use of ${shell ...} can be avoided by using backticks, e.g.
PKG_CPPFLAGS = ‘gsl-config --cflags®

which works in all versions of make known® to be used with R.

If you really must require GNU make, declare it in the DESCRIPTION file by
SystemRequirements: GNU make

and ensure that you use the value of environment variable MAKE (and not just make) in your
scripts. (On some platforms GNU make is available under a name such as gmake, and there
SystemRequirements is used to set MAKE.) Your configure script (or similar) does need to
check that the executable pointed to by MAKE is indeed GNU make.

If you only need GNU make for parts of the package which are rarely needed (for example
to create bibliography files under vignettes), use a file called GNUmakefile rather than
Makefile as GNU make (only) will use the former.

s People use dev.new () to open a device at a particular size: that is not portable but using dev.new (noRStudioGD

= TRUE) helps.
Solaris make did not accept CRLF-terminated Makefiles; Solaris warned about and some other makes ignore
incomplete final lines.

78

7 This was apparently introduced in SunOS 4, and is available elsewhere provided it is surrounded by spaces.

80 GNU make, BSD make and other variants of pmake in FreeBSD, NetBSD and formerly in macOS, and formerly
AT&T make as implemented on Solaris and ‘Distributed Make’ (dmake), part of Oracle Developer Studio and
available in other versions including from Apache OpenOffice.

https://pubs.opengroup.org/onlinepubs/9699919799/utilities/make.html
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Make
https://www.gnu.org/software/autoconf/manual/autoconf.html#Portable-Make

Chapter 1: Creating R packages 57

macOS has used GNU make for many years (it previously used BSD make), but the version
has been frozen at 3.81 (from 2006).

Since the only viable make for Windows is GNU make, it is permissible to use GNU extensions
in files Makevars.win, Makevars.ucrt, Makefile.win or Makefile.ucrt.

e If you use src/Makevars to compile code in a subdirectory, ensure that you have followed
all the advice above. In particular

e Anticipate a parallel make. See Section 1.2.1 [Using Makevars], page 25.

e Pass macros down to the makefile in the subdirectory, including all the needed compiler

flags (including PIC and visibility flags). If they are used (even by a default rule) in

the subdirectory’s Makefile, this includes macros ‘AR’ and ‘RANLIB’. See Section 1.2.1.3

[Compiling in sub-directories], page 31, which has a C example. A C++ example:

pkg/libpkg.a:

(cd pkg && $(MAKE) -f make_pkg libpkg.a \
CXX="$(CXX)" CXXFLAGS="$ (CXXFLAGS) $(CXXPICFLAGS) $(C_VISIBILITY)" \
AR="$ (AR)" RANLIB="$(RANLIB)")

e Ensure that cleanup will be performed by R CMD build, for example in a cleanup script
or a ‘clean’ target.

e If your package uses a src/Makefile file to compile code to be linked into R, ensure that
it uses exactly the same compiler and flag settings that R uses when compiling such code:
people often forget ‘PIC’ flags. If R CMD config is used, this needs something like (for C++)

RBIN = ¢"${R_HOME}/bin/R"°
CXX = “"${RBIN}" CMD config CXX°
CXXFLAGS = ‘"${RBIN}" CMD config CXXFLAGS® ‘"${RBIN}" CMD config CXXPICFLAGS®

e Names of source files including = (such as src/complex_Sig=gen.c) will confuse some make
programs and should be avoided.

e Bash extensions also need to be avoided in shell scripts, including expressions in Makefiles
(which are passed to the shell for processing). Some R platforms use strict®® Bourne
shells: an earlier R toolset on Windows®? and some Unix-alike OSes use ash (https://en.
wikipedia.org/wiki/Almquist_shell, a ‘lightweight shell with few builtins) or derivatives
such as dash. Beware of assuming that all the POSIX command-line utilities are available,
especially on Windows where only a subset (which has changed by version of Rtools) is
provided for use with R. One particular issue is the use of echo, for which two behaviours
are allowed (https://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.
html) and both have occurred as defaults on R platforms: portable applications should use
neither -n (as the first argument) nor escape sequences. The recommended replacement for
echo -n is the command printf. Another common issue is the construction

export FOO=value
which is bash-specific (first set the variable then export it by name).
Using test -e (or [-e 1) in shell scripts is not fully portable®®: -f is normally what is
intended. Flags —a and -o are nowadays declared obsolescent by POSIX and should not be
used. They are easily replaced by more legible forms: replace

test A -a B

test A -0 B
by

test A && test B

81 For example, test options -a and -e are not portable, and not supported in the AT&T Bourne shell used on
Solaris 10/11, even though they are in the POSIX standard. Nor did Solaris support ‘$(cmd)’.

82 as from R 4.0.0 the default is bash.

83 it was not in the Bourne shell, and was not supported by Solaris 10.

https://en.wikipedia.org/wiki/Almquist_shell
https://en.wikipedia.org/wiki/Almquist_shell
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html
https://pubs.opengroup.org/onlinepubs/9699919799/utilities/echo.html

Chapter 1: Creating R packages 58

test A || test B
Use of ‘brace expansion’, e.g.,
rm -f src/*.{o,so0,d}
is not portable.
The string equality operator in shell tests is = : == is a GNU extension.

The -o flag for set in shell scripts is optional in POSIX and not supported on all the
platforms R is used on.

The variable ‘OSTYPE’ is shell-specific and its values are rather unpredictable and may include
a version such as ‘darwin19.0’: ‘uname‘ is often what is intended (with common values
‘Darwin’ and ‘Linux’).

On macOS which shell /bin/sh invokes is user- and platform-dependent: it might be bash
version 3.2, dash or zsh (for new accounts it is zsh, for accounts ported from Mojave or
earlier it is usually bash).

It is not portable to specify bash as the shell let alone a specific path such as /bin/bash.

e R isnot built by default as a shared library on non-Windows platforms (although it commonly
is on macOS to support the GUI), so there need not be a file 1ibR.so nor 1ibR.dylib.
Users of cmake or rust have all too frequently assumed otherwise, so do ensure your package
is checked under a vanilla R build. See Section “Configuration options” in R Installation
and Administration for more information.

e Make use of the abilities of your compilers to check the standards-conformance of your code.
For example, gcc, clang and gfortran® can be used with options -Wall -pedantic to
alert you to potential problems. This is particularly important for C++, where g++ -Wall
-pedantic will alert you to the use of some of the GNU extensions which fail to compile
on most other C++ compilers. If R was not configured accordingly, one can achieve this via
personal Makevars files. See Section “Customizing package compilation” in R Installation
and Administration for more information.

Portable C++ code needs to follow all of the 2011, 2014 and 2017 standards (including not
using deprecated /removed features) or to specify C+11/14/17/20/23 where available (which
is not the case on all R platforms). Currently C++20 support is patchy across R platforms.

If using Fortran with the GNU compiler, use the flags —std=f95 -Wall -pedantic which
reject most GNU extensions and features from later standards. (Although R only requ-
ires Fortran 90, gfortran does not have a way to specify that standard.) Also consider
-std=£2008 as some recent compilers have Fortran 2008 or even 2018 as the minimum
supported standard.

As from macOS 11 (late 2020), its C compiler sets the flag ~-Werror=implicit-function-
declaration by default which forces stricter conformance to C99. This can be used on
other platforms with gcc or clang. If your package has a (autoconf-generated) configure
script, try installing it whilst using this flag, and read through the config.log file —
compilation warnings and errors can lead to features which are present not being detected.
(If possible do this on several platforms.)

e R CMD check performs some checks for non-portable compiler/linker flags in src/Makevars.
However, it cannot check the meaning of such flags, and some are commonly accepted but
with compiler-specific meanings. There are other non-portable flags which are not checked,
nor are src/Makefile files and makefiles in sub-directories. As a comment in the code says

It is hard to think of anything apart from -I* and -D* that is safe for general
use . ..

84 https://fortranwiki.org/fortran/show/Modernizing+0ld+Fortran may help explain some of the warnings
from gfortran -Wall -pedantic.

https://fortranwiki.org/fortran/show/Modernizing+Old+Fortran

Chapter 1: Creating R packages 59

although -pthread is pretty close to portable. (Option -U is portable but little use on the
command line as it will only cancel built-in defines (not portable) and those defined earlier
on the command line (R does not use any).)

The GNU option -pipe used to be widely accepted by C/C++/Fortran compilers, but was
removed in flang-new 18. In any case, it should not be used in distributed code as it may
lead to excessive memory use.

People have used configure to customize src/Makevars, including for specific compilers.
This is unsafe for several reasons. First, unintended compilers might meet the check—for
example, several compilers other than GCC identify themselves as ‘GCC’ whilst being only
partially conformant. Second, future versions of compilers may behave differently (including
updates to quite old series) so for example -Werror (and specializations) can make a package
non-installable under a future version. Third, using flags to suppress diagnostic messages
can hide important information for debugging on a platform not tested by the package
maintainer. (R CMD check can optionally report on unsafe flags which were used.)

Avoid the use of -march and especially -march=native. This allows the compiler to generate
code that will only run on a particular class of CPUs (that of the compiling machine for
native’). People assume this is a ‘minimum’ CPU specification, but that is not how it
is documented for gcc (it is accepted by clang but apparently it is undocumented what
precisely it does, and it can be accepted and may be ignored for other compilers). (For
personal use -mtune is safer, but still not portable enough to be used in a public package.)
Not even gcc supports ‘native’ for all CPUs, and it can do surprising things if it finds a
CPU released later than its version.

3

Do be very careful with passing arguments between R, C and Fortran code. In particular,
long in C will be 32-bit on some R platforms (including 64-bit Windows), but 64-bit on
most modern Unix and Linux platforms. It is rather unlikely that the use of long in C code
has been thought through: if you need a longer type than int you should use a configure
test for a C99/C++11 type such as int_fast64_t (and failing that, long long) and typedef
your own type, or use another suitable type (such as size_t, but beware that is unsigned
and ssize_t is not portable).

It is not safe to assume that long and pointer types are the same size, and they are not on
64-bit Windows. If you need to convert pointers to and from integers use the C99/C++11
integer types intptr_t and uintptr_t (in the headers <stdint.h> and <cstdint>: they
are not required to be implemented by the standards but are used in C code by R itself).

Note that integer in Fortran corresponds to int in C on all R platforms. There is no such
guarantee for Fortran logical, and recent gfortran maps it to int_least32_t on most
platforms.

Under no circumstances should your compiled code ever call abort or exit®®: these terminate
the user’s R process, quite possibly losing all unsaved work. One usage that could call abort
is the assert macro in C or C++ functions, which should never be active in production
code. The normal way to ensure that is to define the macro NDEBUG, and R CMD INSTALL
does so as part of the compilation flags. Beware of including headers (including from other
packages) which could undefine it, now or in future versions. If you wish to use assert during
development, you can include -UNDEBUG in PKG_CPPFLAGS or #undef it in your headers or
code files. Note that your own src/Makefile or makefiles in sub-directories may also need
to define NDEBUG.

This applies not only to your own code but to any external software you compile in or link
to.

Nor should Fortran code call STOP nor EXIT (a GNU extension).

85

or where supported the variants _Exit and _exit.

Chapter 1: Creating R packages 60

e Compiled code should not write to stdout or stderr and C++ and Fortran I/O should not
be used. As with the previous item such calls may come from external software and may
never be called, but package authors are often mistaken about that.

e Compiled code should not call the system random number generators such as rand, drand48
and random®®, but rather use the interfaces to R’s RNGs described in Section 6.3 [Random
numbers|, page 174. In particular, if more than one package initializes a system RNG (e.g. via
srand), they will interfere with each other. This applies also to Fortran 90’s random_number
and random_seed, and Fortran 2018’s random_init. And to GNU Fortran’s rand, irand and
srand. Except for drand48, what PRNG these functions use is implementation-dependent.

Nor should the C++11 random number library be used nor any other third-party random
number generators such as those in GSL.

e Use of sprintf and vsprintf is regarded as a potential security risk and warned about on
some platforms.®” R CMD check reports if any calls are found.

e Errors in memory allocation and reading/writing outside arrays are very common causes
of crashes (e.g., segfaults) on some machines. See Section 4.3 [Checking memory access],
page 112, for tools which can be used to look for this.

e Many platforms will allow unsatisfied entry points in compiled code, but will crash the
application (here R) if they are ever used. Some (notably Windows) will not. Looking at
the output of

nm -pg mypkg.so
and checking if any of the symbols marked U is unexpected is a good way to avoid this.

e Linkers have a lot of freedom in how to resolve entry points in dynamically-loaded code, so
the results may differ by platform. One area that has caused grief is packages including
copies of standard system software such as 1ibz (especially those already linked into R).
In the case in point, entry point gzgets was sometimes resolved against the old version
compiled into the package, sometimes against the copy compiled into R and sometimes
against the system dynamic library. The only safe solution is to rename the entry points
in the copy in the package. We have even seen problems with entry point name myprintf,
which is a system entry point®® on some Linux systems.

A related issue is the naming of libraries built as part of the package installation. macOS
and Windows have case-insensitive file systems, so using

-L. -1LZ4

in PKG_LIBS will match 1iblz4. And -L. only appends to the list of searched locations,
and 1iblz4 might be found in an earlier-searched location (and has been). The only safe
way is to give an explicit path, for example

./1ibLZ4.a

e Conflicts between symbols in DLLs are handled in very platform-specific ways. Good ways
to avoid trouble are to make as many symbols as possible static (check with nm -pg), and to
use names which are clearly tied to your package (which also helps users if anything does go
wrong). Note that symbol names starting with R_ are regarded as part of R’s namespace
and should not be used in packages.

e It is good practice for DLLs to register their symbols (see Section 5.4 [Registering native
routines|, page 129), restrict visibility (see Section 6.18 [Controlling visibility], page 194)
and not allow symbol search (see Section 5.4 [Registering native routines|, page 129). It

86 This and srandom are in any case not portable. They are in POSIX but not in the C99 standard, and not

available on Windows.
87

88

including macOS as from version 13.
in libselinux.

Chapter 1: Creating R packages 61

should be possible for a DLL to have only one visible symbol, R_init_pkgname, on suitable
platforms®®, which would completely avoid symbol conflicts.

It is not portable to call compiled code in R or other packages via .Internal, .C, .Fortran,
.Call or .External, since such interfaces are subject to change without notice and will
probably result in your code terminating the R process.

Do not use (hard or symbolic) file links in your package sources. Where possible R CMD
build will replace them by copies.

If you do not yourself have a Windows system, consider submitting your source package to
WinBuilder (https://win-builder.r-project.org/) before distribution. If you need to
check on an M1 Mac, there is a check service at https://mac.r-project.org/macbuilder/
submit.html.

It is bad practice for package code to alter the search path using library, require or
attach and this often does not work as intended. For alternatives, see Section 1.1.3.1
[Suggested packages|, page 12, and with().

Examples can be run interactively via example as well as in batch mode when checking. So
they should behave appropriately in both scenarios, conditioning by interactive() the
parts which need an operator or observer. For instance, progress bars? are only appropriate
in interactive use, as is displaying help pages or calling View() (see below).

Be careful with the order of entries in macros such as PKG_LIBS. Some linkers will re-order
the entries, and behaviour can differ between dynamic and static libraries. Generally -L
options should precede® the libraries (typically specified by -1 options) to be found from
those directories, and libraries are searched once in the order they are specified. Not all
linkers allow a space after -L .

Care is needed with the use of LinkingTo. This puts one or more directories on the include
search path ahead of system headers but (prior to R 3.4.0) after those specified in the
CPPFLAGS macro of the R build (which normally includes -I/usr/local/include, but most
platforms ignore that and include it with the system headers).

Any confusion would be avoided by having LinkingTo headers in a directory named after
the package. In any case, name conflicts of headers and directories under package include
directories should be avoided, both between packages and between a package and system
and third-party software.

The ar utility is often used in makefiles to make static libraries. Its modifier u is defined
by POSIX but is disabled in GNU ar on some Linux distributions which use ‘deterministic
mode’. The safest way to make a static library is to first remove any existing file of that
name then use $(AR) -cr and then $(RANLIB) if needed (which is system-dependent: on
most systems®? ar always maintains a symbol table). The POSIX standard says options
should be preceded by a hyphen (as in -cr), although most OSes accept them without. Note
that on some systems ar —cr must have at least one file specified.

The s modifier (to replace a separate call to ranlib) is required by X/OPEN but not POSIX,
so ar —-crs is not portable.

For portability the AR and RANLIB macros should always be used — some builds require
wrappers such as gcc—ar or extra arguments to specify plugins.

The strip utility is platform-specific (and CRAN prohibits removing debug symbols). For
example the options --strip-debug and --strip-unneeded of the GNU version are not
supported on macOS: the POSIX standard for strip does not mention any options, and

At least Linux and Windows, but not macOS.

except perhaps the simplest kind as used by download.file() in non-interactive use.
Whereas the GNU linker reorders so -L options are processed first, the Solaris one did not.
some versions of macOS did not.

https://win-builder.r-project.org/
https://mac.r-project.org/macbuilder/submit.html
https://mac.r-project.org/macbuilder/submit.html

Chapter 1: Creating R packages 62

what calling it without options does is platform-dependent. Stripping a .so file could even
prevent it being dynamically loaded into R on an untested platform.

1d -S invokes strip --strip-debug for GNU 1d (and similarly on macOS) but is not
portable: in particular on Solaris it did something completely different and took an argument.

e Some people have a need to set a locale. Locale names are not portable, and e.g. ‘fr_FR.utf8’
is commonly used on Linux but not accepted on macOS. ‘fr_FR.UTF-8’ is more portable,
being accepted on recent Linux, AIX, FreeBSD, macOS and Solaris (at least). However, some
Linux distributions micro-package, so locales defined by glibe (including these examples)
may not be installed.

e Avoid spaces in file names, not least as they can cause difficulties for external tools. An
example was a package with a knitr (https://CRAN.R-project.org/package=knitr) vign-
ette that used spaces in plot names: this caused some older versions of pandoc to fail with a
baffling error message.

Non-ASCII filenames can also cause problems (particularly in non-UTF-8 locales).

e Take care in naming IWTEX macros (also known as ‘commands’) in vignette sources: if these
are also defined in a future version of one of the IWXTEX packages used there will be a fatal
error. One instance in 2021 was package ‘hyperref’ newly defining ‘\C’, ‘\F’, ‘\G’, ‘\U” and
‘\textapprox’. If you are confident that your definitions will be the only ones relevant you
can use ‘\renewcommand’ but it is better to use names clearly associated with your package.

e Make sure that any version requirement for Java code is both declared in the
‘SystemRequirements’ field”® and tested at runtime (not least as the Java installation when
the package is installed might not be the same as when the package is run and will not be
for binary packages).

When specifying a minimum Java version please use the official version names, which are
(confusingly)

1.11.21.31.45.067 89 10 11 12 13 14 15 16 17 18 19 20 21

and as from 2018 a year.month scheme such as ‘18.9’ is also in use. Fortunately only the
integer values are likely to be relevant. If at all possible, use one of the LTS versions (8, 11,
17,21 ...) as the minimum version. The preferred form of version specification is

SystemRequirements: Java (>= 11)

A suitable test for Java at least version 8 for packages using rJava (https://CRAN.
R-project.org/package=rJava) would be something like
.jinit Q)
jv <= .jcall("java/lang/System", "S", "getProperty", "java.runtime.version")
if (substr(jv, 1L, 2L) == "1.") {
jvn <- as.numeric(pasteO(strsplit(jv, "[.1")[[1L1]1[1:2], collapse = "."))

if(jvn < 1.8) stop("Java >= 8 is needed for this package but not available")
}

Java 9 changed the format of this string (which used to be something like ‘1.8.0_292-b10’);
Java 11 gave jv as ‘11+28’ whereas Java 11.0.11 gave ‘11.0.11+9’. (https://openjdk.
org:443/jeps/322 details the current scheme. Note that it is necessary to allow for pre-
releases like ‘11-ea+22’.)

Note too that the compiler used to produce a jar can impose a minimum Java version, often
resulting in an arcane message like

java.lang.UnsupportedClassVersionError: ... Unsupported major.minor version 52.0

93 1f a Java interpreter is required directly (not via rJava (https://CRAN.R-project.org/package=rJava)) this
must be declared and its presence tested like any other external command.

https://CRAN.R-project.org/package=knitr
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava
https://openjdk.org:443/jeps/322
https://openjdk.org:443/jeps/322
https://CRAN.R-project.org/package=rJava

Chapter 1: Creating R packages 63

(Where https://en.wikipedia.org/wiki/Java_class_file maps class-file version num-
bers to Java versions.) Compile with something like javac -target 11 to ensure this is
avoided. Note this also applies to packages distributing (or even downloading) compiled
Java code produced by others, so their requirements need to be checked (they are often
not documented accurately) and accounted for. It should be possible to check the class-file
version via command-line utility javap, if necessary after extracting the .class files from a
.jar archive. For example,

jar xvf some.jar
javap -verbose path/to/some.class | grep major

Some packages have stated a requirement on a particular JDK, but a package should only
be requiring a JRE unless providing its own Java interface.

Java 8 is still in widespread use (and may remain so because of licence changes and support
on older OSes: OpenJDK has security support until March 2026). On the other hand, newer
platforms may only have support for recent versions of Java: for ‘arm64’ macOS the first
officially supported version was 17.

e A package with a hard-to-satisfy system requirement is by definition not portable, annoyingly
so if this is not declared in the ‘SystemRequirements’ field. The most common example is
the use of pandoc, which is only available for a very limited range of platforms (and has
onerous requirements to install from source) and has capabilities? that vary by build but
are not documented. Several recent versions of pandoc for macOS did not work on R’s
then target of High Sierra (and this too was undocumented). Another example is the Rust
compilation system (cargo and rustc).

Usage of external commands should always be conditional on a test for presence (perhaps
using Sys.which), as well as declared in the ‘SystemRequirements’ field. A package should
pass its checks without warnings nor errors without the external command being present.

An external command can be a (possibly optional) requirement for an imported or suggested
package but needed for examples, tests or vignettes in the package itself. Such usages should
always be declared and conditional.

Interpreters for scripting languages such as Perl, Python and Ruby need to be declared as
system requirements and used conditionally: for example macOS 10.16 was announced not
to have them (but released as macOS 11 with them); later it was announced that macOS
12.3 does not have Python 2 and only a minimal install of Python 3 is included. Python 2
has passed end-of-life and been removed from many major distributions. Support for Rust
or Go cannot be assumed.

Command cmake is not commonly installed, and where it is, it might not
be on the path. In particular, the most common location on macOS is
/Applications/CMake.app/Contents/bin/cmake and that should be looked for if cmake
is not found on the path.

e Be sure to use portable encoding names: none of utf8, mac and macroman is portable. See
the help for file for more details.

e Do not invoke R by plain R, Rscript or (on Windows) Rterm in your examples, tests,
vignettes, makefiles or other scripts. As pointed out in several places earlier in this manual,
use something like

"$ (R_HOME) /bin/Rscript"
"$(R_HOME) /bin$ (R_ARCH_BIN) /Rterm"

with appropriate quotes (as, although not recommended, R_HOME can contain spaces).

e Do not use R_HOME in makefiles except when passing them to the shell. Specifically, do
not use R_HOME in the argument to include, as R_HOME can contain spaces. Quoting the

94 For example, the ability to handle ‘https://’ URLs.

https://en.wikipedia.org/wiki/Java_class_file

Chapter 1: Creating R packages 64

argument to include does not help. A portable and the recommended way to avoid the
problem of spaces in ${R_HOME} is using option -f of make. This is easy to do with recursive
invocation of make, which is also the only usual situation when R_HOME is needed in the
argument for include.

$(MAKE) -f "${R_HOME}/etc${R_ARCH}/Makeconf" -f Makefile.inner

If distributing datasets involving date-times, consider if a time zone needs to be specified.
The most portable way to distribute date-times is as objects of class "POSIXct" and as these
record the time in UTC, the time represented is independent of the time zone: but how it is
printed may not be. Objects of class "POSIX1t" should have a "tzone" attribute. Dates
(e.g, birthdays) are conventionally considered independently of time zone.

If at all possible avoid any Internet access during package installation. Installation and use
may well be on different machines/accounts and those allowed to install software may have
no Internet access, and being self-contained helps ensure long-term reproducibility.

Do be careful in what your tests (and examples) actually test. Bad practice seen in distributed

packages include:

It is not reasonable to test the time taken by a command: you cannot know how fast or how
heavily loaded an R platform might be. At best you can test a ratio of times, and even that
is fraught with difficulties and not advisable: for example, the garbage collector may trigger
at unpredictable times following heuristics that may change without notice.

Do not test the exact format of R messages (from R itself or from other packages): They
change, and they can be translated.

Packages have even tested the exact format of system error messages, which are platform-
dependent and perhaps locale-dependent. For example, in late 2021 1libcurl changed its
warning/error messages, including when URLs are not found.

Do not test for the absence of warnings (something users of testthat (https://CRAN.
R-project.org/package=testthat) are fond of). Future changes in either R or packages
you make use of can create new warnings, and your tests should not make these into errors.
(Some deprecation notices may be intended to remain as warnings for a long time.)

If you use functions such as View, remember that in testing there is no one to look at the
output. It is better to use something like one of

if (interactive()) View(obj) else print(head(obj))

if (interactive()) View(obj) else str(obj)
Be careful when comparing file paths. There can be multiple paths to a single file, and some
of these can be very long character strings. If possible canonicalize paths before comparisons,
but study ?normalizePath to be aware of the pitfalls.

Only test the accuracy of results if you have done a formal error analysis. Things such as
checking that probabilities numerically sum to one are silly: numerical tests should always
have a tolerance. That the tests on your platform achieve a particular tolerance says little
about other platforms. R is configured by default to make use of long doubles where available,
but they may not be available or be too slow for routine use. Most R platforms use ‘ix86’
or ‘x86_64" CPUs: these may use extended precision registers on some but not all of their
FPU instructions. Thus the achieved precision can depend on the compiler version and
optimization flags—our experience is that 32-bit builds tend to be less precise than 64-bit
ones. But not all platforms use those CPUs, and not all®® which use them configure them to
allow the use of extended precision. In particular, current ARM CPUs do not have extended
precision nor long doubles, and clang currently has long double the same as double on all
ARM CPUs. On the other hand some CPUs have higher-precision modes which may be
used for long double, notably 64-bit PowerPC and Sparc.

95

Not doing so is the default on Windows, overridden for the R executables.

https://CRAN.R-project.org/package=testthat
https://CRAN.R-project.org/package=testthat

Chapter 1: Creating R packages 65

If you must try to establish a tolerance empirically, configure and build R with --disable-
long-double and use appropriate compiler flags (such as -ffloat-store and -fexcess-
precision=standard for gcc, depending on the CPU type®) to mitigate the effects of
extended-precision calculations. The platform most often seen to give different numerical
results is ‘arm64’ macOS, so be sure to include that in any empirical determination.

Tests which involve random inputs or non-deterministic algorithms should normally set a
seed or be tested for many seeds.

o Tests should use options(warn = 1) as reporting
There were 22 warnings (use warnings() to see them)
is pointless, especially for automated checking systems.

e If your package uses dates/times, ensure that it works in all timezones, especially those
near boundaries (problems have most often be seen in ‘Europe/London’ (zero offset in
Winter) and ‘Pacific/Auckland’, near enough the International Date line) and with
offsets not in whole hours (Adelaide, Chatham Islands, ...). More extreme examples
are ‘Africa/Conakry’ (permanent UTC), ‘Asia/Calcutta’ (no DST, permanent half-hour
offset) and ‘Pacific/Kiritimati’(no DST, more than 12 hours ahead of UTC).

1.6.1 PDF size

There are a several tools available to reduce the size of PDF files: often the size can be reduced
substantially with no or minimal loss in quality. Not only do large files take up space: they can
stress the PDF viewer and take many minutes to print (if they can be printed at all).

qpdf (https://qpdf.sourceforge.io/) can compress losslessly. It is fairly readily available
(e.g. it is included in rtools, has packages in Debian/Ubuntu/Fedora, and is installed as part
of the CRAN macOS distribution of R). R CMD build has an option to run gpdf over PDF files
under inst/doc and replace them if at least 10Kb and 10% is saved. The full path to the qpdf
command can be supplied as environment variable R_QPDF (and is on the CRAN binary of R
for macOS). It seems MiKTeX does not use PDF object compression and so qpdf can reduce
considerably the sizes of files it outputs: MiKTeX’s defaults can be overridden by code in the
preamble of an Sweave or IXTEX file — see how this is done for the R reference manual at
https://svn.r-project.org/R/trunk/doc/manual/refman. top.

Other tools can reduce the size of PDF's containing bitmap images at excessively high resolution.
These are often best re-generated (for example Sweave defaults to 300 ppi, and 100150 is more
appropriate for a package manual). These tools include Adobe Acrobat (not Reader), Apple’s
Preview?” and Ghostscript (which converts PDF to PDF by

ps2pdf options -dAutoRotatePages=/None -dPrinted=false in.pdf out.pdf
and suitable options might be

-dPDFSETTINGS=/ebook
-dPDFSETTINGS=/screen

See https://ghostscript.readthedocs.io/en/latest/VectorDevices.html for more such
and consider all the options for image downsampling). There have been examples in CRAN
packages for which current versions of Ghostscript produced much bigger reductions than earlier
ones (e.g. at the upgrades from 9.50 to 9.52, from 9.55 to 9.56 and then to 10.00.0).

We come across occasionally large PDF files containing excessively complicated figures using
PDF vector graphics: such figures are often best redesigned or failing that, output as PNG files.

96 These are not needed for the default compiler settings on ‘x86_64" but are likely to be needed on ‘ix86’.

97 Select ‘Save as’, and select ‘Reduce file size’ from the ‘Quartz filter’ menu’: this can be accessed in other ways,
for example by Automator.

https://qpdf.sourceforge.io/
https://svn.r-project.org/R/trunk/doc/manual/refman.top
https://ghostscript.readthedocs.io/en/latest/VectorDevices.html

Chapter 1: Creating R packages 66

Option --compact-vignettes to R CMD build defaults to value ‘gqpdf’: use ‘both’ to
try harder to reduce the size, provided you have Ghostscript available (see the help for
tools: : compactPDF).

1.6.2 Check timing

There are several ways to find out where time is being spent in the check process. Start by
setting the environment variable _R_CHECK_TIMINGS_ to ‘O’. This will report the total CPU
times (not Windows) and elapsed times for installation and several checks, including for running
examples, tests and vignettes, under each sub-architecture if appropriate. For tests and vignettes,
it reports the time for each as well as the total.

Setting _R_CHECK_TIMINGS_ to a positive value sets a threshold (in seconds elapsed time) for
reporting timings.

If you need to look in more detail at the timings for examples, use option --timings
to R CMD check (this is set by --as-cran). This adds a summary to the check output for
all the examples with CPU or elapsed time of more than 5 seconds. It produces a file
mypkg.Rcheck/mypkg-Ex.timings containing timings for each help file: it is a tab-delimited file
which can be read into R for further analysis.

Timings for the tests and vignette runs are given at the bottom of the corresponding log
file: note that log files for successful vignette runs are only retained if environment variable
_R_CHECK_ALWAYS_LOG_VIGNETTE_OUTPUT_ is set to a true value.

1.6.3 Encoding issues

The issues in this subsection have been much alleviated by the change in R 4.2.0 to running
the Windows port of R in a UTF-8 locale where available. However, Windows users might be
running an earlier version of R on an earlier version of Windows which does not support UTF-8
locales.

Care is needed if your package contains non-ASCII text, and in particular if it is intended to
be used in more than one locale. It is possible to mark the encoding used in the DESCRIPTION
file and in .Rd files, as discussed elsewhere in this manual.

First, consider carefully if you really need non-ASCII text. Some users of R will only be
able to view correctly text in their native language group (e.g. Western European, Eastern
European, Simplified Chinese) and ASCIL.?. Other characters may not be rendered at all,
rendered incorrectly, or cause your R code to give an error. For .Rd documentation, marking
the encoding and including ASCII transliterations is likely to do a reasonable job. The set of
characters which is commonly supported is wider than it used to be around 2000, but non-Latin
alphabets (Greek, Russian, Georgian, . . .) are still often problematic and those with double-width
characters (Chinese, Japanese, Korean, emoji) often need specialist fonts to render correctly.

Several CRAN packages have messages in their R code in French (and a few in German). A
better way to tackle this is to use the internationalization facilities discussed elsewhere in this
manual.

Function showNonASCIIfile in package tools can help in finding non-ASCII bytes in files.

There is a portable way to have arbitrary text in character strings (only) in your R code,
which is to supply them in Unicode as ‘\uxxxx’ escapes (or, rarely needed except for emojis,
‘\Uxxxxxxxx’ escapes). If there are any characters not in the current encoding the parser will
encode the character string as UTF-8 and mark it as such. This applies also to character strings
in datasets: they can be prepared using ‘\uxxxx’ escapes or encoded in UTF-8 in a UTF-8 locale,
or even converted to UTF-8 via iconv(). If you do this, make sure you have ‘R (>=2.10)’ (or
later) in the ‘Depends’ field of the DESCRIPTION file.

98 except perhaps some special characters such as backslash and hash which may be taken over for currency

symbols.

Chapter 1: Creating R packages 67

R sessions running in non-UTF-8 locales will if possible re-encode such strings for display (and
this is done by RGui on older versions of Windows, for example). Suitable fonts will need to be
selected or made available®® both for the console/terminal and graphics devices such as ‘X11()’
and ‘windows()’. Using ‘postscript’ or ‘pdf’ will choose a default 8-bit encoding depending
on the language of the UTF-8 locale, and your users would need to be told how to select the
‘encoding’ argument.

Note that the previous two paragraphs only apply to character strings in R code. Non-ASCII
characters are particularly prevalent in comments (in the R code of the package, in examples,
tests, vignettes and even in the NAMESPACE file) but should be avoided there. Most commonly
people use the Windows extensions to Latin-1 (often directional single and double quotes, ellipsis,
bullet and en and em dashes) which are not supported in strict Latin-1 locales nor in CJK locales
on Windows. A surprisingly common misuse is to use a right quote in ‘don’t’ instead of the
correct apostrophe.

Datasets can include marked UTF-8 or Latin-1 character strings. As R is nowadays unlikely
to be run in a Latin-1 or Windows’ CP1252 locale, for performance reasons these should be
converted to UTF-8.

If you want to run R CMD check on a Unix-alike over a package that sets a package encoding
in its DESCRIPTION file and do not use a UTF-8 locale you may need to specify a suitable locale
via environment variable R_ENCODING_LOCALES. The default is equivalent to the value

"latinl=en_US:latin2=pl_PL:UTF-8=en_US.UTF-8:latin9=fr_FR.is08859150euro"

(which is appropriate for a system based on glibc: macOS requires latin9=fr_FR.IS08859-15)
except that if the current locale is UTF-8 then the package code is translated to UTF-8 for
syntax checking, so it is strongly recommended to check in a UTF-8 locale.

1.6.4 Portable C and C++ code

Writing portable C and C++ code is mainly a matter of observing the standards (C99, C++14
or where declared C++11/17/20) and testing that extensions (such as POSIX functions) are
supported. Do make maximal use of your compiler diagnostics — this typically means using
flags -Wall and -pedantic for both C and C++ and additionally ~-Werror=implicit-function-
declaration and -Wstrict-prototypes for C (on some platforms and compiler versions) these
are part of -Wall or -pedantic).

C++ standards: From version 4.0.0 R required and defaulted to C++11; from R 4.1.0 in
defaulted to C++14 and from R 4.3.0 to C++17 (where available). For maximal portability a
package should either specify a standard (see Section 1.2.4 [Using C++ code|, page 34) or be
tested under all of C++11, C++14 and C++17.

Later C++ standards, notably C++17 remove features deprecated in earlier versions. Unfortu-
nately some compilers, notably g++ have retained these features so if possible test under another
compiler (such as that used on macOS).

Note that the ‘TR1’ C++ extensions are not part of any of these standards and the <tr1/name>
headers are not supplied by some of the compilers used for R, including on macOS. (Use the
C++11 versions instead.)

A common error is to assume recent versions of compilers or OSes. In production environments
‘long term support’ versions of OSes may be in use for many years,'°® and their compilers may
not be updated during that time. For example, GCC 4.8 was still in use in 2022 and could be
(in RHEL 7) until 2028: that supports neither C++14 nor C++17.

99 Typically on a Unix-alike this is done by telling fontconfig where to find suitable fonts to select glyphs from.

100 Ubuntu provides 5 years of support (but people were running 14.04 after 7 years) and RHEL provides 10 years
full support and up to 14 with extended support.

Chapter 1: Creating R packages 68

The POSIX standards only require recently-defined functions to be declared if certain macros
are defined with large enough values, and on some compiler/OS combinations'?! they are not
declared otherwise. So you may need to include something like one of

#define _XOPEN_SOURCE 600
or

#ifdef __GLIBC__
define _POSIX_C_SOURCE 200809L
#endif

before any headers. (strdup, strncasecmp and strnlen are such functions — there were several
older platforms which did not have the POSIX 2008 function strnlen.)

‘Linux’ is not a well-defined operating system: it is a kernel plus a collection of components.
Most distributions use glibc to provide most of the C headers and run-time library, but others,
notably Alpine Linux, use other implementations such as musl — see https://wiki.musl-1libc.
org/functional-differences-from-glibc.html.

However, some common errors are worth pointing out here. It can be helpful to look up
functions at https://cplusplus.com/reference/ or https://en.cppreference.com/w/ and
compare what is defined in the various standards.

More care is needed for functions such as mallinfo which are not specified by any of these
standards—hopefully the man page on your system will tell you so. Searching online for such
pages for various OSes (preferably at least Linux and macOS, and the FreeBSD manual pages at
https://man.freebsd.org/cgi/man.cgi allow you to select many OSes) should reveal useful
information but a configure script is likely to be needed to check availability and functionality.

Both the compiler and OS (via system header files, which may differ by architecture even
for nominally the same OS) affect the compilability of C/C++ code. Compilers from the GCC,
LLVM (clang and flang) Intel and Oracle Developer Studio suites have been used with R, and
both LLVM clang and Oracle have more than one implementation of C++ headers and library.
The range of possibilities makes comprehensive empirical checking impossible, and regrettably
compilers are patchy at best on warning about non-standard code.

e Mathematical functions such as sqrt are defined in C++11 for floating-point arguments:
float, double, long double and possibly more. The standard specifies what happens with
an argument of integer type but this is not always implemented, resulting in a report of
‘overloading ambiguity’: this was commonly seen on Solaris, but for pow also seen on macOS
and other platforms using clang++.

A not-uncommonly-seen problem is to mistakenly call floor(x/y) or ceil(x/y) for int
arguments x and y. Since x/y does integer division, the result is of type int and ‘overloading
ambiguity’ may be reported. Some people have (pointlessly) called floor and ceil on
arguments of integer type, which may have an ‘overloading ambiguity’.

A surprising common misuse is things like pow(10, -3): this should be the constant 1e-3.
Note that there are constants such as M_SQRT2 defined via Rmath.h!%? for sqrt(2.0),
frequently mis-coded as sqrt(2).

e Function fabs is defined only for floating-point types, except in C++11 and later which
have overloads for std: :fabs in <cmath> for integer types. Function abs is defined in C99’s
<stdlib.h> for int and in C++’s <cstdlib> for integer types, overloaded in <cmath> for
floating-point types. C++11 has additional overloads for std: :abs in <cmath> for integer

101 This is seen on Linux, Solaris and FreeBSD, although each has other ways to turn on all extensions, e.g.
defining _GNU_SOURCE, __EXTENSIONS__ or _BSD_SOURCE: the GCC compilers by default define _GNU_SOURCE
unless a strict standard such as -std=c99 is used. On macOS extensions are declared unless one of these

macros is given too small a value.

102 often taken from the toolchain’s headers.

https://wiki.musl-libc.org/functional-differences-from-glibc.html
https://wiki.musl-libc.org/functional-differences-from-glibc.html
https://cplusplus.com/reference/
https://en.cppreference.com/w/
https://man.freebsd.org/cgi/man.cgi

Chapter 1: Creating R packages 69

types. The effect of calling abs with a floating-point type is implementation-specific: it may
truncate to an integer. For clarity and to avoid compiler warnings, use abs for integer types
and fabs for double values, and when using C++ include <cmath> and use the std:: prefix.

e It is an error (and make little sense, although has been seen) to call macros/functions
isnan, isinf and isfinite for integer arguments: a few compilers give a compilation error.
Function finite is obsolete, and some compilers will warn about its use!%.

e The GNU C/C++ compilers support a large number of non-portable extensions. For example,
INFINITY (which is a float value in C99 and C++11), for which R provides the portable
double value R_PosInf (and R_NegInf for —~INFINITY). And NAN'** is just one NaN float
value: for use with R, NA_REAL is often what is intended, but R_Nal is also available.

Some (but not all) extensions are listed at https://gcc.gnu.org/onlinedocs/
gcc/C-Extensions.html and https://gcc.gnu.org/onlinedocs/gecc/
C_002b_002b-Extensions.html.

Other GNU extensions which have bitten package writers are the use of non-portable
characters such as ‘$’ in identifiers and use of C++ headers under ext.

e Including C-style headers in C++ code is not portable. Including the legacy header'®® math.h
in C++ code may conflict with cmath which may be included by other headers. In C++11,
functions like sqrt and isnan are defined for double arguments in math.h and for a range of
types including double in cmath. Similar issues have been seen for stdlib.h and cstdlib.
Including the C++ header first used to be a sufficient workaround but for some 2016 compilers
only one could be included.

e Be careful to include the headers which define the functions you use. Some compilers/OSes
include other system headers in their headers which are not required by the standards,
and so code may compile on such systems and not on others. (A prominent example is
the C++ header <random> which is indirectly included by <algorithm> by g++. Another
issue is the C header <time.h> which is included by other headers on Linux and Windows
but not macOS.) g++ 11 often needs explicit inclusion of the C++ headers <limits> (for
numeric_limits) or <exception> (for set_terminate and similar), whereas earlier vers-
ions included these in other headers. g++ 13 requires the explicit inclusion of <cstdint>
for types such as uint32_t which was previously included implicitly. (For more such, see
https://gcc.gnu.org/gcc-13/porting_to.html.) There are further instances of this in
g++ 15: see https://gcc.gnu.org/gcc-13/porting_to.html.

Note that malloc, calloc, realloc and free are defined by C99 in the header stdlib.h
and (in the std:: namespace) by C++ header cstdlib. Some earlier implementations used
a header malloc.h, but that is not portable and does not exist on macOS.

This also applies to types such as ssize_t. The POSIX standards say that is declared in
headers unistd.h and sys/types.h, and the latter is often included indirectly by other
headers on some but not all systems.

POSIX mandates the header unistd.h: most but not all OSes supply header sys/unistd.h
as a wrapper, so this should not be used.

Similarly for constants: for example SIZE_MAX is defined in stdint.h alongside size_t.

e Some headers are not portable: we have just mentioned malloc.h and often CRAN
submissions attempt to use endian.h. The latter is a glibc extension: some OSes have
machine/endian.h or sys/endian.h but some have neither. Header execinfo.h is only

103 4t the time of writing ‘arm64’ macOS both warned and did not supply a prototype in math.h which resulted

in a compilation error.

104 51s0 part of C++11 and later.

105 which often is the same as the header included by the C compiler, but some compilers have wrappers for some

of the C headers.

https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/C-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Extensions.html
https://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Extensions.html
https://gcc.gnu.org/gcc-13/porting_to.html
https://gcc.gnu.org/gcc-13/porting_to.html

Chapter 1: Creating R packages 70

available on a few OSes: formerly nor in MacOS nor Solaris, and currently not on Linux
systems (such as Alpine Linux) using musl. Nor is header fpu_control.h available on
macOS nor musl.

e Use #include "my.h" not #include <my.h> for headers in your package. The second form
is intended for system headers and the search order for such headers is platform-dependent
(and may not include the current directory). For extra safety, name headers in a way that
cannot be confused with a system header so not, for example, types.h.

e For C++ code, be careful to specify namespaces where needed. Many functions are defined
by the standards to be in the std namespace, but g++ puts many such also in the C++ main
namespace. One way to do so is to use declarations such as

using std::floor;
but it is usually preferable to use explicit namespace prefixes in the code.
Examples seen in CRAN packages include

abs acos atan bind calloc ceil div exp fabs floor fmod free log malloc
memcpy memset pow printf gsort round sin sprintf sqrt strcmp strcpy
strerror strlen strncmp strtol tan trunc

This problem is less common than it used to be, but in 2019 LLVM clang did not have bind
in the main namespace. Also seen has been type size_t defined only in the std namespace.

NB: These functions are only guaranteed to be in the std namespace if the correct C++
header is included, e.g. <cmath> rather than <math.h>.

If you define functions in C++ which are inspired by later standards, put them in a namespace
and refer to them using the namespace. We have seen conflicts with std: :make_unique
from C++14 and std: :byte, std::data, std: :sample and std: :size from C++17.

e In C++ code
using namespace std;

is not good practice, and has caused platform-dependent errors if included before headers,
especially system headers (which may be included by other headers). The best practice is
to use explicit std: : prefixes for all functions declared by the C++ standard to be in that
namespace. It is an error to use using namespace std before including any C++ headers,
and some recent compilers will warn if this is done.

e Some C++ compilers refuse to compile constructs such as
if(ptr > 0) {}

which compares a pointer to the integer 0. This could just use if (ptr) (pointer addresses
cannot be negative) but if needed pointers can be tested against nullptr (C++11) or NULL.

e Macros defined by the compiler/OS can cause problems. Identifiers starting with an
underscore followed by an upper-case letter or another underscore are reserved for system
macros and should not be used in portable code (including not as guards in C/C++ headers).
Other macros, typically upper-case, may be defined by the compiler or system headers and
can cause problems. Some of these can be avoided by defining _POSIX_C_SOURCE before
including any system headers, but it is better to only use all-upper-case names which have a
unique prefix such as the package name.

e typedefs in OS headers can conflict with those in the package: examples have included
ulong, index_t, single and thread. (Note that these may conflict with other uses as
identifiers, e.g. defining a C++ function called single.) The POSIX standard reserves (in
§2.2.2) all identifiers ending in _t.

e Some compilers do not allow a space between -D and the macro to be defined. Similarly for
-U.

Chapter 1: Creating R packages 71

e If you use OpenMP, check carefully that you have followed the advice in the subsection on
Section 1.2.1.1 [OpenMP support], page 28. In particular, any use of OpenMP in C/C++
code will need to use

#ifdef _OPENMP
include <omp.h>
#endif

Any use of OpenMP functions, e.g. omp_set_num_threads, also needs to be conditioned.
To avoid incessant warnings such as

warning: ignoring #pragma omp parallel [-Wunknown-pragmas]

uses of such pragmas should also be conditioned (or commented out if they are used in code
in a package not enabling OpenMP on any platform).

Do not hardcode -1gomp: not only is that specific to the GCC family of compilers, using
the correct linker flag often sets up the run-time path to the library.

e Package authors commonly assume things are part of C/C++ when they are not: the most
common example is POSIX!% function strdup. The most common C library on Linux,
glibc, will hide the declarations of such extensions unless a ‘feature-test macro’ is defined
before (almost) any system header is included. So for strdup you need

#define _POSIX_C_SOURCE 200809L
#include <string.h>

strdup call(s)

where the appropriate value can be found by man strdup on Linux. (Use of strncasecmp is
similar.)

However, modes of gcc with ‘GNU EXTENSIONS’ (which are the default, either ~std=gnu99
or -std=gnull) declare enough macros to ensure that missing declarations are rarely seen.

This applies also to constants such as M_PI and M_LN2, which are part of the X/Open
standard: to use these define _XOPEN_SOURCE before including any headers, or include the R
header Rmath.h.

e Using alloca portably is tricky: it is neither an ISO C/C++ nor a POSIX function. An
adequately portable preamble is

#ifdef __GNUC__

/* Includes GCC, clang and Intel compilers */

undef alloca

define alloca(x) __builtin_alloca((x))

#elif defined(__sun) || defined(_AIX)

/* this was necessary (and sufficient) for Solaris 10 and AIX 6: */
include <alloca.h>

#endif

e Compiler writers feel free to implement features from later standards than the one specified,
so for example they may implement or warn on C++14/17/20 features when C++11 is
specified. Portable code will not use such features — it can be hard to know what they are
but the most common warnings are

’register’ storage class specifier is deprecated and incompatible with C++17

IS0 C++11 does not allow conversion from string literal to ’char *’

106 Although this was added for C23, full support of that is years away.

Chapter 1: Creating R packages 72

(where conversion should be to const char *). Keyword register was not mentioned in
C++98, deprecated in C++11 and removed in C++17.

There are quite a lot of other C++98 features deprecated in C++11 and removed in C++17,
and LLVM clang 9 and later warn about them (and as from version 16 they have been
removed). Examples include bind1st/bind2nd (use std::bind or lambdas'®") std: :auto_
ptr (replaced by std::unique_ptr), std: :mem_fun_ref and std: :ptr_fun.

Later versions of standards may add reserved words: for example bool, false and true
became keywords in C23 and are no longer available as variable names. As noted above,
C++17 uses byte, data, sample and size.

So avoid common words and keywords from other programming languages.
Be careful about including C headers in C++ code. Issues include
e Use of the register storage class specifier (see the previous but one item).

e The C99 keyword restrict is not part of'% any C++ standard and is rejected by some
C++ compilers.

e Inclusion by such headers of C-style headers such as math.h (see above).

The most portable way to interface to other software with a C API is to use C code (which
can normally be mixed with C++ code in a package).

Include only what is essential in extern "C" {} blocks in C++ code. In particular it is not
portable to include R headers in such blocks (although they are themselves C code, they
may include C++ system headers and the public ones already enclose their declarations in
such a block). And maintainers have include R headers from other headers included in such
a block.

reinterpret_cast in C++ is not safe for pointers: for example the types may have different
alignment requirements. Use memcpy to copy the contents to a fresh variable of the destination
type.

Avoid platform-specific code if at all possible, but if you need to test for a platform ensure
that all platforms are covered. For example, __unix__ is not defined on all Unix-alikes, in
particular not on macOS. A reasonably portable way to condition code for a Unix-alike is

#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
#endif

but

#ifdef _WIN32

// Windows-specific code

if defined(_M_ARM64) || defined(__aarch64__)
// for ARM

else

// for Intel

endif

#else

// Unix-alike code

#endif

would be better. For a Unix-alike it is much better to use configure to test for the
functionality needed than make assumptions about OSes (and people all too frequently
forget R is used on platforms other than Linux, Windows and macOS — and some forget
macOS).

107
108

https://stackoverflow.com/questions/32739018/a-replacement-for-stdbind2nd
it is allowed but ignored in system headers.

https://stackoverflow.com/questions/32739018/a-replacement-for-stdbind2nd

Chapter 1: Creating R packages 73

e Headers in subdirectories are often not portable. For C++, this includes bits/, tr1/ and
tr2/, none of which exist on macOS (and ext/ exists there but with different content from
g++-based platforms). Header bits/stdc++.h is both not portable and not recommended
for end-user code even on platforms which include it.

e Be careful if using malloc or calloc. First, their return value must always be checked to
see if the allocation succeeded — it is almost always easier to use R’s R_Calloc, which does
check. Second, the first argument is of type size_t!%? and some recent compilers warn about
passing int (signed) arguments (which could get promoted to ridiculously large values).

e For C code, consider using the flag -Wstrict-prototypes which is supported by gcc and
LLVM and Apple clang. This has found quite a number of errors where functions have
been declared without arguments and is likely to become the default in future compilers.
(It already is for Apple clang and for LLVM clang in C23 mode.) Note that using f ()
for a function without any parameters was deprecated in C99 and C11, but it became
non-deprecated in C23. However, f(void) is supported by all standards and avoids any
uncertainty.

LLVM clang has a separate warning -Wdeprecated-non-prototype which is enabled by
-Wstrict-prototypes. This warns on K&R-style usage, which will not be accepted in C23.

e Several C entry points are warned against in their man pages on most systems, often in very
strong terms such as 'Do not use these functions’. macOS has started to warn''? if these are
used for sprintf, vsprintf, gets, mktemp, tempmam and tmpnam. It is highly recommended
that you use safer alternatives (on any platform) but the warning can be avoided by defining
‘_POSIX_C_SOURCE’ to for example ‘200809L’ before including the (C or C++) header which
defines them. (However, this may hide other extensions.)

e Compilers may interpret comments in source code, so it is necessary to remove any intended
for a compiler to interpret. The main example has been comments for Visual Fortran (as
the Intel Fortran compiler has been known on Windows!'!!) like

IDEC$ ATTRIBUTES DLLEXPORT,C,REFERENCE,ALIAS:’kdenestmlcvb’ :: kdenestmlcvb

which are interpreted by Intel Fortran on all platforms (and are inappropriate for use with
R on Windows). gfortran has similar forms starting with !GCC$.

e The C++ new operator takes argument std: :size_t size, which is unsigned. Using a signed
integer type such as int may lead to compiler warnings such as

warning: argument 1 value ’18446744073709551615° exceeds maximum object
size 9223372036854775807 [-Walloc-size-larger-than=]

(especially if LTO is used). So don’t do that!

e Some authors feel the need to print (using Rprintf or similar) vector lengths or indices
which are of type R_xlen_t. That may be a 32-bit or (most commonly) 64-bit type but
which integer type it is mapped to is platform-specific. The safest way is to cast the length
to double and use a double format. So one could use something like

SEXP Robj; R_xlen_t nelem;
Rf_error("Actual: %0.f; Expected %0.f\n", (double) XLENGTH(Robj), (double) nelc

(This could print to full precision, lengths well beyond the address space limits of current
OSes, let alone practical limits.)

If you do want to use an integer format, be aware that R_xlen_t is implemented by the int,
long or long long type on current platforms and even on 64-bit ones need not be the same
type as int64_t. So the values will need to be cast to the type assumed by the format (and
%11d was not supported on Windows until R 4.2.0).

109 an unsigned 64-bit integer type on recent R platforms.

110 Wwhen using the macOS 13 SDK with a deployment target of macOS 13.
111 and at one time as DEC Fortran, hence the DEC.

Chapter 1: Creating R packages 74

e Variadic macros in C or C++ only portably allow a non-zero number of arguments, although
some compilers have allowed zero, often with a warning. The latter was standardized in
C++20 using the __VA_OPT__ macro. C23 also allows zero arguments in a similar way.

Some additional information for C++ is available at https://journal.r-project.org/
archive/2011-2/RJournal_2011-2_Plummer.pdf by Martyn Plummer.

Several OSes have or currently do provide multiple C++ runtimes — Solaris did and the LLVM
clang compiler has a native C++ runtime library libc++ but is also used with GCC’s 1ibstdc++
(by default on Debian/Ubuntu). This makes it unsafe to assume that OS libraries with a C++
interface are compatible with the C++ compiler specified by R. Many of these system libraries
also have C interfaces which should be used in preference to their C++ interface. Otherwise it is
essential that a package checks compatibility in its configure script, including that C++ code
using the library can both be linked and loaded.

1.6.4.1 Common symbols

Most OSes (including all those commonly used for R) have the concept of ‘tentative definitions’
where global C variables are defined without an initializer. Traditionally the linker resolved all
tentative definitions of the same variable in different object files to the same object, or to a
non-tentative definition. However, gcc 10'? and LLVM clang 113 changed their default so
that tentative definitions cannot be merged and the linker will give an error if the same variable
is defined in more than one object file. To avoid this, all but one of the C source files should
declare the variable extern — which means that any such variables included in header files need
to be declared extern. A commonly used idiom (including by R itself) is to define all global
variables as extern in a header, say globals.h (and nowhere else), and then in one (and one
only) source file use

#define extern
include "globals.h"
#undef extern

A cleaner approach is not to have global variables at all, but to place in a single file common
variables (declared static) followed by all the functions which make use of them: this may result
in more efficient code.

The ‘modern’ behaviour can be seen'!* by using compiler flag -fno-common as part of ‘CFLAGS’
in earlier versions of gcc and clang.

-fno-common is said to be particularly beneficial for ARM CPUs.

This is not pertinent to C++ which does not permit tentative definitions.

1.6.4.2 C++17 issues

R 4.3.0 and later default to C++17 when compiling C++, and that finally removed many C++98
features which were deprecated as long ago as C++11. Compiler/runtime authors have been slow
to remove these, but LLVM clang with its 1libc++ runtime library finally started to do so in
2023 — some others warn but some do not.

The principal offender is the ‘Boost’ collection of C++ headers and libraries. There are two
little-documented ways to work around aspects of its outdated code. One is to add

-D_HAS_AUTO_PTR_ETC=0

12 gee https://gcc.gnu.org/gcc-10/porting_to.html.

13 See https://prereleases.llvm.org/11.0.0/rc2/tools/clang/docs/ReleaseNotes.html#
modified-compiler-flags.
114 1 principle this could depend on the OS, but has been checked on Linux and macOS.

https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf
https://journal.r-project.org/archive/2011-2/RJournal_2011-2_Plummer.pdf
https://gcc.gnu.org/gcc-10/porting_to.html
https://prereleases.llvm.org/11.0.0/rc2/tools/clang/docs/ReleaseNotes.html#modified-compiler-flags
https://prereleases.llvm.org/11.0.0/rc2/tools/clang/docs/ReleaseNotes.html#modified-compiler-flags

Chapter 1: Creating R packages 75

to PKG_CPPLAGS in src/Makevars, src/Makevars.win and src/Makevars.ucrt. This covers
the removal of

std::auto_ptr
std::unary_function
std: :binary_function
std: :random_shuffle
std::binderlst
std::binder2nd

with most issues seen with code that includes boost/functional.hpp, usually indirectly.
A rarer issue is the use of illegal values for enum types, usually negative ones such as
BOOST_MPL_AUX_STATIC_CAST(AUX_WRAPPER_VALUE_TYPE, (value - 1));
in boost/mpl/aux_/integral_wrapper.hpp. Adding
-Wno-error=enum-constexpr-conversion

to PKG_CXXFLAGS will allow this, but that flag is only accepted by recent versions of LLVM clang
(and will not be in future) so needs a configure test.

Pre=built versions of current clang/libc++ are usually available from https://github.
com/1lvm/1lvm-project/releases for a wide range of platforms (but the Windows builds there
are not compatible with Rtools and the macOS ones are unsigned). To select libc++ add
-stdlib=1ibc++ to CXX, for example by having

CXX="/path/to/clang/clang++ -std=gnu++17 -stdlib=libc++"
in 7/.R/Makevars.

Another build for Windows which may be sufficiently compatible with Rtools can be found
at https://github.com/mstorsjo/llvm-mingw: this uses 1ibc++.

1.6.4.3 C23 changes

The C23 standard was finally published in Oct 2024, by which time it had been widely implemented
for a least a couple of years. It will become the default of GCC 15, and R will default to it if
available from R 4.5.0.
Some of the more significant changes are
e bool, true and false become keywords and so can no longer be used as identifiers.

These have been available as a boolean type since C99 by including the header stdbool.h.
Both that and C23''® set the macro __bool_true_false_are_defined to 1 so this type
can be used in all versions of C supported by R.

e The meaning of an empty argument list has been changed to mean zero arguments —
however for clarity fun(void) is still preferred by many code readers and supported by all
C standards. (Compilers may warn about an empty argument list in C23 mode.)

e INIINITY and NAN are available via header float.h and deprecated in math.h.
e POSIX functions memccpy, strdup and strndup are part of C23.

e There are decimal floating-point types and functions and extended support of binary floating-
point functions, including binary floating-point constants.

1.6.5 Portable Fortran code

For many years almost all known R platforms used gfortran as their Fortran compiler, but
now there are LLVM and ‘classic’ flang and the Intel compilers ifort!'® and ifx are now
free-of-change.

115 Kyt €23 declares that header and the macro to be obsolescent.
16 giscontinued in 2023.

https://github.com/llvm/llvm-project/releases
https://github.com/llvm/llvm-project/releases
https://github.com/mstorsjo/llvm-mingw

Chapter 1: Creating R packages 76

There is still a lot of Fortran code in CRAN packages which predates Fortran 77. Modern
Fortran compilers are being written to target a minimum standard of Fortran 2018. and it is
desirable that Fortran code in packages complies with that standard. For gfortran this can be
checked by adding -std=£2018 to FFLAGS. The most commonly seen issues are

e The use of DFLOAT, which was superseded by DBLE in Fortran 77. Also, use of DCMPLX,
DCONJG, DIMAG and similar.

e Use of what gfortran calls ‘Fortran 2018 deleted features’, although most were ‘deleted’
in earlier standards: those itemized here were deleted in Fortran 2008. (In the Fortran
standards ‘deleted” means features that compilers are not required to implement.) These
include

e Arithmetic IF statements.

e DO loops which are not terminated with a END DO or CONTINUE statement. (Unlabelled
DO loops terminated by END DO are preferred for readability.)

e Labelled DO loops sharing a terminating CONTINUE statement.

e The use of GNU Fortran extensions. Some are listed at https://gcc.gnu.org/onlinedocs/
gfortran/Extensions-implemented-in-GNU-Fortran.html. Others which have caused
problems include etime, getpid, isnan'!'” and sizeof.

One that frequently catches package writers is that it allows out-of-order declarations: in
standard-conformant Fortran variables must be declared (explicitly or implicitly) before use
in other declarations such as dimensions.

Unfortunately this flags extensions such as DOUBLE COMPLEX and COMPLEX#*16. R has tested that
DOUBLE COMPLEX works and so is preferred to COMPLEX*16. (One can also use something like
COMPLEX (KIND=KIND(0.0D0)).)

GNU Fortran 10 and later give a compilation error for the previously widespread practice of
passing a Fortran array element where an array is expected, or a scalar instead of a length-one
array. See https://gcc.gnu.org/gcc-10/porting_to.html. As do the Intel Fortran compilers,
and they can be stricter.

The use of IMPLICIT NONE is highly recommended — Intel compilers with ~warn will warn on
variables without an explicit type.

Common non-portable constructions include

e The use of Fortran types such as REAL(KIND=8) is very far from portable. According to the
standards this merely enumerates different supported types, so DOUBLE PRECISION might be
REAL (KIND=3) (and is on an actual compiler). Even if for a particular compiler the value
indicates the size in bytes, which values are supported is platform-specific — for example
gfortran supports values of 4 and 8 on all current platforms and 10 and 16 on a few (but
not for example on all ‘arm’ CPUs).

The same applies to INTEGER (KIND=4) and COMPLEX (KIND=16).

Many uses of integer and real variable in Fortran code in packages will interwork with C (for
example .Fortran is written in C), and R has checked that INTEGER and DOUBLE PRECISION
correspond to the C types int and double. To make this explicit, from Fortran 2003
one can use the named constants c_int, c_double and c_double_complex from module
iso_c_binding.

e The Intel compilers only recognize the extensions .f (fixed-form) and .£90 (free-form) and
not .£95. R CMD INSTALL works around this for packages without a src/Makefile.

17 There is a portable way to do this in Fortran 2003 (ieee_is_nan() in module ieee_arithmetic), but that
was not supported in the versions 4.x of GNU Fortran. A pretty robust alternative is to test if (my_var /=
my_var).

https://gcc.gnu.org/onlinedocs/gfortran/Extensions-implemented-in-GNU-Fortran.html
https://gcc.gnu.org/onlinedocs/gfortran/Extensions-implemented-in-GNU-Fortran.html
https://gcc.gnu.org/gcc-10/porting_to.html

Chapter 1: Creating R packages 77

e Use of extensions .F and .F90 to indicate source code to be preprocessed: the preprocessor
used is compiler-specific and may or may not be cpp. Compilers may even preprocess files
with extension .f or .£90 (Intel does).

e Fixed form Fortran (with extension .f) should only use 72 columns, and free-form at most
132 columns. This includes trailing comments. Over-long lines may be silently truncated or
give a warning.

e Tabs are not part of the Fortran character set: compilers tend to accept them but how they
are interpreted is compiler-specific.

e Fortran-66-style Hollerith constants.

As well as ‘deleted features’, Fortran standards have ‘obsolescent features’. These are similar
to ‘deprecated’ in other languages, but the Fortran standards committee has said it will only
move them to ‘deleted’ status when they are no longer much used. These include

e ENTRY statements.

e FORALL statements.

e Labelled DO statements.

e COMMON and EQUIVALENCE statements, and BLOCK DATA units.
e Computed GOTO statements, replaced by SELECT CASE.

e Statement functions.

e DATA statements after executable statements.

e Specific (rather than generic) names for intrinsic functions.

gfortran with option -std=£2018 will warn about these: R will report only in the installation
log.

1.6.6 Binary distribution

If you want to distribute a binary version of a package on Windows or macOS, there are further
checks you need to do to check it is portable: it is all too easy to depend on external software on
your own machine that other users will not have.

For Windows, check what other DLLs your package’s DLL depends on (‘imports’ from in the
DLL tools’ parlance). A convenient GUI-based tool to do so is ‘Dependency Walker’ (https://
www . dependencywalker.com/) for both 32-bit and 64-bit DLLs — note that this will report as
missing links to R’s own DLLs such as R.d11 and Rblas.dll. The command-line tool objdump
in the appropriate toolchain will also reveal what DLLs are imported from. If you use a toolchain
other than one provided by the R developers or use your own makefiles, watch out in particular for
dependencies on the toolchain’s runtime DLLs such as libgfortran, 1ibstdc++ and libgcc_s.

For macOS, using R CMD otool -L on the package’s shared object(s) in the 1libs di-
rectory will show what they depend on: watch for any dependencies in /usr/local/lib or
/usr/local/gfortran/lib, notably libgfortran.?.dylib and libquadmath.0.dylib. (For
ways to fix these, see Section “Building binary packages” in R Installation and Administration.)

Many people (including the CRAN package repository) will not accept source packages
containing binary files as the latter are a security risk. If you want to distribute a source package
which needs external software on Windows or macOS, options include

e To arrange for installation of the package to download the additional software from a URL,
as e.g. package Cairo (https://CRAN.R-project.org/package=Cairo) used to.

e To negotiate with Tomas Kalibera to include Windows software in Rtools or with Simon
Urbanek to include macOS software in his ‘recipes’ system.

e (For CRAN.) To negotiate with Uwe Ligges to host the additional components on WinBuilder,
and write a configure.win file to install them.

https://www.dependencywalker.com/
https://www.dependencywalker.com/
https://CRAN.R-project.org/package=Cairo

Chapter 1: Creating R packages 78

Be aware that license requirements may require you to supply the sources for the additional
components (and will if your package has a GPL-like license).

1.7 Diagnostic messages

Diagnostic messages can be made available for translation, so it is important to write them in a
consistent style. Using the tools described in the next section to extract all the messages can
give a useful overview of your consistency (or lack of it). Some guidelines follow.

e Messages are sentence fragments, and not viewed in isolation. So it is conventional not to
capitalize the first word and not to end with a period (or other punctuation).

e Try not to split up messages into small pieces. In C error messages use a single format string
containing all English words in the messages.

In R error messages do not construct a message with paste (such messages will not be
translated) but via multiple arguments to stop or warning, or via gettextf.

e Do not use colloquialisms such as “can’t” and “don’t”.
e Conventionally single quotation marks are used for quotations such as
’ord’ must be a positive integer, at most the number of knots
and double quotation marks when referring to an R character string or a class, such as
’format’ must be "normal" or "short" - using "normal"

Since ASCII does not contain directional quotation marks, it is best to use ‘>’ and let the
translator (including automatic translation) use directional quotations where available. The
range of quotation styles is immense: unfortunately we cannot reproduce them in a portable
texinfo document. But as a taster, some languages use ‘up’ and ‘down’ (comma) quotes
rather than left or right quotes, and some use guillemets (and some use what Adobe calls
‘guillemotleft’ to start and others use it to end).

In R messages it is also possible to use sQuote or dQuote as in

stop(gettextf("object must be of class %s or %s",
dQuote("manova"), dQuote("maov")),
domain = NA)

e Occasionally messages need to be singular or plural (and in other languages there may be
no such concept or several plural forms — Slovenian has four). So avoid constructions such
as was once used in library

if ((length(nopkgs) > 0) && !missing(lib.loc)) {
if (length(nopkgs) > 1)
warning("libraries ",
paste(sQuote(nopkgs), collapse = ", "),
" contain no packages")
else
warning("library ", paste(sQuote(nopkgs)),
" contains no package")

}

and was replaced by

if ((length(nopkgs) > 0) && !missing(lib.loc)) {
pkglist <- paste(sQuote(nopkgs), collapse = ", ")
msg <- sprintf (ngettext(length(nopkgs),
"library %s contains no packages",
"libraries ¥%s contain no packages",
domain = "R-base"),
pkglist)

Chapter 1: Creating R packages 79

warning (msg, domain=NA)

}

Note that it is much better to have complete clauses as here, since in another language one
might need to say ‘There is no package in library %s’ or ‘There are no packages in libraries

%s’.

1.8 Internationalization

There are mechanisms to translate the R- and C-level error and warning messages. There are
only available if R is compiled with NLS support (which is requested by configure option
--enable-nls, the default).

The procedures make use of msgfmt and xgettext which are part of GNU gettext and this
will need to be installed: ‘x86_64" Windows users can find pre-compiled binaries at https://
www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip.

1.8.1 C-level messages
The process of enabling translations is

e In a header file that will be included in all the C (or C++ or Objective C/C++) files containing
messages that should be translated, declare

#include <R.h> /* to include Rconfig.h */

#ifdef ENABLE_NLS

#include <libintl.h>

#define _(String) dgettext ("pkg", String)
/* replace pkg as appropriate */

#else

#define _(String) (String)

#endif

e For each message that should be translated, wrap it in _(...), for example
error(_("’ord’ must be a positive integer"));
If you want to use different messages for singular and plural forms, you need to add

#ifndef ENABLE_NLS
#define dngettext(pkg, String, StringP, N) (N == 1 ? String : StringP)
#endif

and mark strings by
dngettext ("pkg", <singular string>, <plural string>, n)
e In the package’s src directory run
xgettext —-keyword=_ -o pkg.pot *.c

The file src/pkg.pot is the template file, and conventionally this is shipped as po/pkg.pot.

1.8.2 R messages

Mechanisms are also available to support the automatic translation of R stop, warning and
message messages. They make use of message catalogs in the same way as C-level messages, but
using domain R-pkg rather than pkg. Translation of character strings inside stop, warning and
message calls is automatically enabled, as well as other messages enclosed in calls to gettext or
gettextf. (To suppress this, use argument domain=NA.)

Tools to prepare the R-pkg. pot file are provided in package tools: xgettext2pot will prepare
a file from all strings occurring inside gettext/gettextf, stop, warning and message calls.

https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip
https://www.stats.ox.ac.uk/pub/Rtools/goodies/gettext-tools.zip

Chapter 1: Creating R packages 80

Some of these are likely to be spurious and so the file is likely to need manual editing. xgettext
extracts the actual calls and so is more useful when tidying up error messages.

The R function ngettext provides an interface to the C function of the same name: see
example in the previous section. It is safest to use domain="R-pkg" explicitly in calls to ngettext,
and necessary for earlier versions of R unless they are calls directly from a function in the package.

1.8.3 Preparing translations

Once the template files have been created, translations can be made. Conventional translations
have file extension .po and are placed in the po subdirectory of the package with a name that is
either ‘11.po’ or ‘R-11.po’ for translations of the C and R messages respectively to language
with code ‘11°.

See Section “Localization of messages” in R Installation and Administration for details of
language codes.

There is an R function, update_pkg_po in package tools, to automate much of the maintenance
of message translations. See its help for what it does in detail.

If this is called on a package with no existing translations, it creates the directory pkgdir/po,
creates a template file of R messages, pkgdir/po/R-pkg.pot, within it, creates the ‘en@quot’
translation and installs that. (The ‘en@quot’ pseudo-language interprets quotes in their directional
forms in suitable (e.g. UTF-8) locales.)

If the package has C source files in its src directory that are marked for translation, use
touch pkgdir/po/pkg.pot
to create a dummy template file, then call update_pkg_po again (this can also be done before it
is called for the first time).

When translations to new languages are added in the pkgdir/po directory, running the same
command will check and then install the translations.

If the package sources are updated, the same command will update the template files, merge
the changes into the translation .po files and then installed the updated translations. You will
often see that merging marks translations as ‘fuzzy’ and this is reported in the coverage statistics.
As fuzzy translations are not used, this is an indication that the translation files need human
attention.

The merged translations are run through tools: :checkPofile to check that C-style formats
are used correctly: if not the mismatches are reported and the broken translations are not
installed.

This function needs the GNU gettext-tools installed and on the path: see its help page.

1.9 CITATION files

An installed file named CITATION will be used by the citation() function. (It should be in the
inst subdirectory of the package sources.)

The CITATION file is parsed as R code (in the package’s declared encoding, or in ASCII if none
is declared). It will contain calls to function bibentry. Here is that for nlme (https://CRAN.
R-project.org/package=nlme):

R package reference generated from DESCRIPTION metadata
citation(auto = meta)

NLME book

bibentry(bibtype = "Book",
title = "Mixed-Effects Models in S and S-PLUS",
author = c(person(c("José", "C."), "Pinheiro"),

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme

Chapter 1: Creating R packages 81

person(c("Douglas", "M."), "Bates")),
year = "2000", publisher = "Springer", address = "New York",
doi = "10.1007/98882")

Note how the first call auto-generates citation information from object meta, a parsed
version of the DESCRIPTION file — it is tempting to hardcode such information, but it normally
then gets outdated. How the first entry would look like as a bibentry call can be seen from
print(citation("pkgname", auto = TRUE), style = "R") for any installed package. Auto-
generated information is returned by default if no CITATION file is present.

See ?bibentry for further details of the information which can be provided. In case a bibentry
contains WTEX markup (e.g., for accented characters or mathematical symbols), it may be
necessary to provide a text representation to be used for printing via the textVersion argument
to bibentry. E.g., earlier versions of nlme (https://CRAN.R-project.org/package=nlme)
additionally used something like

textVersion =
paste0("Jose Pinheiro, Douglas Bates, Saikat DebRoy, ",
"Deepayan Sarkar and the R Core Team (",

sub("-.x", "" meta$Date),
"). nlme: Linear and Nonlinear Mixed Effects Models. ",
sprintf ("R package version %s", meta$Version), ".")

The CITATION file should itself produce no output when source-d.

It is desirable (and essential for CRAN) that the CITATION file does not contain calls to
functions such as packageDescription which assume the package is installed in a library tree
on the package search path.

1.10 Package types

The DESCRIPTION file has an optional field Type which if missing is assumed to be ‘Package’,
the sort of extension discussed so far in this chapter. Currently one other type is recognized;
there used also to be a ‘Translation’ type.

1.10.1 Frontend

This is a rather general mechanism, designed for adding new front-ends such as the former
gnomeGUI package (see the Archive area on CRAN). If a configure file is found in the top-level
directory of the package it is executed, and then if a Makefile is found (often generated by
configure), make is called. If R CMD INSTALL --clean is used make clean is called. No other
action is taken.

R CMD build can package up this type of extension, but R CMD check will check the type and
skip it.

Many packages of this type need write permission for the R installation directory.

1.11 Services

Several members of the R project have set up services to assist those writing R packages,
particularly those intended for public distribution.

win-builder.r-project.org (https://win-builder.r-project.org) offers the automated
preparation of (‘x86_64") Windows binaries from well-tested source packages.

R-Forge (R-Forge.r-project.org (https://R-Forge.r-project.org)) and RForge
(www.rforge.net (https://www.rforge.net)) are similar services with similar names. Both
provide source-code management through SVN, daily building and checking, mailing lists
and a repository that can be accessed via install.packages (they can be selected by

https://CRAN.R-project.org/package=nlme
https://win-builder.r-project.org
https://R-Forge.r-project.org
https://www.rforge.net

Chapter 1: Creating R packages 82

setRepositories and the GUI menus that use it). Package developers have the opportunity
to present their work on the basis of project websites or news announcements. Mailing lists,
forums or wikis provide useRs with convenient instruments for discussions and for exchanging
information between developers and/or interested useRs.

83

2 Writing R documentation files

2.1 Rd format

R objects are documented in files written in “R documentation” (Rd) format, a simple markup
language much of which closely resembles (La)TgEX, which can be processed into a variety of
formats, including WTEX, HTML and plain text. The translation is carried out by functions in
the tools package called by the script Rdconv in R_HOME/bin and by the installation scripts for
packages.

The R distribution contains more than 1400 such files which can be found in the
src/library/pkg/man directories of the R source tree, where pkg stands for one of the standard
packages which are included in the R distribution.

As an example, let us look at a simplified version of src/library/base/man/load.Rd which
documents the R function load.

-

% File src/library/base/man/load.Rd
\name{load}
\alias{load}
\title{Reload Saved Datasets}
\description{
Reload datasets written with the function \code{save}.
}
\usage{
load(file, envir = parent.frame(), verbose = FALSE)
}
\arguments{
\item{file}{a (readable binary-mode) \link{connection}
or a character string giving the name of the file to load
(when \link{tilde expansion} is done).}
\item{envir}{the environment where the data should be loaded.}
\item{verbose}{should item names be printed during loading?}
}
\value{
A character vector of the names of objects created, invisibly.
}
\seealso{
\code{\link{savel}}.
}
\examplesq{
save all data
save(list = 1ls(all.names = TRUE), file = "all.RData")

restore the saved values to the current environment
load("all.RData")
¥
\keyword{file}
\, J

An Rd file consists of three parts. The header gives basic information about the name of
the file, the topics documented, a title, a short textual description and R usage information for
the objects documented. The body gives further information (for example, on the function’s
arguments and return value, as in the above example). Finally, there is an optional footer with
keyword information. The header is mandatory.

Information is given within a series of sections with standard names (and user-defined sections
are also allowed). Unless otherwise specified' these should occur only once in an Rd file (in any

1 e.g. \alias, \keyword and \note sections.

Chapter 2: Writing R documentation files 84

order), and the processing software will retain only the first occurrence of a standard section in
the file, with a warning.

See “Guidelines for Rd files” (https://developer.r-project.org/Rds.html) for guidelines
for writing documentation in Rd format which should be useful for package writers. The R generic
function prompt is used to construct a bare-bones Rd file ready for manual editing. Methods
are defined for documenting functions (which fill in the proper function and argument names)
and data frames. There are also functions promptData, promptPackage, promptClass, and
promptMethods for other types of Rd files.

The general syntax of Rd files is summarized below. For a detailed technical discussion of
current Rd syntax, see “Parsing Rd files” (https://developer.r-project.org/parseRd.pdf).

Rd files consist of four types of text input. The most common is I¥TEX-like, with the backslash
used as a prefix on markup (e.g. \alias), and braces used to indicate arguments (e.g. {load}).
The least common type of text is ‘verbatim’ text, where no markup other than the comment
marker (%) is processed. There is also a rare variant of ‘verbatim’ text (used in \eqn, \deqn,
\figure, and \newcommand) where comment markers need not be escaped. The final type is
R-like, intended for R code, but allowing some embedded macros. Quoted strings within R-like
text are handled specially: regular character escapes such as \n may be entered as-is. Only
markup starting with \1 (e.g. \1ink) or \v (e.g. \var) will be recognized within quoted strings.
The rarely used vertical tab \v must be entered as \\v.

Each macro defines the input type for its argument. For example, the file initially uses
ITEX-like syntax, and this is also used in the \description section, but the \usage section
uses R-like syntax, and the \alias macro uses ‘verbatim’ syntax. Comments run from a percent
symbol % to the end of the line in all types of text except the rare ‘verbatim’ variant (as on the
first line of the load example).

Because backslashes, braces and percent symbols have special meaning, to enter them into
text sometimes requires escapes using a backslash. In general balanced braces do not need to be
escaped, but percent symbols always do, except in the ‘verbatim’ variant. For the complete list
of macros and rules for escapes, see “Parsing Rd files” (https://developer.r-project.org/
parseRd.pdf).

2.1.1 Documenting functions

The basic markup commands used for documenting R objects (in particular, functions) are given
in this subsection.

\name{name?}

name typically? is the basename of the Rd file containing the documentation. It is
the “name” of the Rd object represented by the file and has to be unique in a package.
To avoid problems with indexing the package manual, it may not contain ‘!’ ‘|’ nor
‘@. (IATEX special characters are allowed, but may not be collated correctly in the
index.) There can only be one \name entry in a file, and it must not contain any
markup and should only contain printable ASCII characters. Entries in the package
manual will be in alphabetic® order of the \name entries.

\alias{topic}
The \alias sections specify all “topics” the file documents. This information is
collected into index data bases for lookup by the on-line (plain text and HTML)
help systems. The topic can contain spaces, but (for historical reasons) leading and

2 There can be exceptions: for example Rd files are not allowed to start with a dot, and have to be uniquely
named on a case-insensitive file system.

3 in the current locale, and with special treatment for IATEX special characters and with any ‘pkgname-package’
topic moved to the top of the list.

https://developer.r-project.org/Rds.html
https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 85

trailing spaces will be stripped. Percent and left brace need to be escaped by a
backslash.

There may be several \alias entries. Quite often it is convenient to document
several R objects in one file. For example, file Normal.Rd documents the density,
distribution function, quantile function and generation of random variates for the
normal distribution, and hence starts with

\name{Normal}
\alias{Normal}
\alias{dnorm}
\alias{pnorm}
\alias{qgnorm}
\alias{rnorm}

Also, it is often convenient to have several different ways to refer to an R object, and
an \alias does not need to be the name of an object.

Note that the \name is not necessarily a topic documented, and if so desired it needs
to have an explicit \alias entry (as in this example).

\title{Title}
Title information for the Rd file. This should be capitalized and not end in a period;
try to limit its length to at most 65 characters for widest compatibility.

Markup is supported in the text, but use of characters other than English text and
punctuation (e.g., ‘<’) may limit portability.

There must be one (and only one) \title section in a help file.

\description{...}
A short description of what the function(s) do(es) (one paragraph, a few lines only).
(If a description is too long and cannot easily be shortened, the file probably tries to
document too much at once.) This is mandatory except for package-overview files.

\usage{fun(argl, arg2, ...)}
One or more lines showing the synopsis of the function(s) and variables documented
in the file. These are set in typewriter font. This is an R-like command.

The usage information specified should match the function definition exactly (such
that automatic checking for consistency between code and documentation is possible).

To indicate that a function can be used in several different ways, depending on the
named arguments specified, use section \details. E.g., abline.Rd contains

\detailsq{
Typical usages are
\preformatted{abline(a, b, ...)

Use \method{generic}{class} to indicate the name of an S3 method for the generic
function generic for objects inheriting from class "class". In the printed versions,
this will come out as generic (reflecting the understanding that methods should
not be invoked directly but via method dispatch), but codoc() and other QC tools
always have access to the full name.

For example, print.ts.Rd contains

\usage{
\method{print}{ts}(x, calendar, \dots)
}

Chapter 2: Writing R documentation files 86

which will print as

Usage:

S3 method for class ’ts’:
print(x, calendar, ...)

Usage for replacement functions should be given in the style of dim(x) <- value
rather than explicitly indicating the name of the replacement function ("dim<-" in
the above). Similarly, one can use \method{generic}{class}(arglist) <- value
to indicate the usage of an S3 replacement method for the generic replacement
function "generic<-" for objects inheriting from class "class".

Usage for S3 methods for extracting or replacing parts of an object, S3 methods
for members of the Ops group, and S3 methods for user-defined (binary) infix
operators (‘%xxx%’) follows the above rules, using the appropriate function names.
E.g., Extract.factor.Rd contains

\usage{

\method{[}{factor}(x, \dots, drop = FALSE)
\method{[[}{factor}(x, \dots)
\method{[}{factor}(x, \dots) <- value

}

which will print as

Usage:

S3 method for class ’factor’:

x[..., drop = FALSE]
S3 method for class ’factor’:
x[[...]1]

S3 replacement method for class ’factor’:
x[...] <= value

\S3method is accepted as an alternative to \method.

\arguments{...}

\details{..

\value{...

Description of the function’s arguments, using an entry of the form
\item{arg_i}{Description of arg_i.}

for each element of the argument list. (Note that there is no whitespace between
the three parts of the entry.) Arguments can also be described jointly by separating
their names with commas (and optional whitespace) in the \item label. There may
be optional text outside the \item entries, for example to give general information
about groups of parameters.

3
A detailed if possible precise description of the functionality provided, extending the
basic information in the \description slot.

}

Description of the function’s return value.

If a list with multiple values is returned, you can use entries of the form
\item{comp_i}{Description of comp_i.}

for each component of the list returned. There may be optional text outside the
\item entries (see for example the joint help for rle and inverse.rle, or the sets
of items in 110n_info). Note that \value is implicitly a \describe environment,

Chapter 2: Writing R documentation files 87

so that environment should not be used for listing components, just individual
\item{}{} entries.*

\references{...}
A section with references to the literature. Use \url{} or \href{}{} for web pointers,
and \doi{} for DOIs (this needs R >= 3.3, see Section 2.13 [User-defined macros,
page 98, for more info).

\note{...}
Use this for a special note you want to have pointed out. Multiple \note sections
are allowed, but might be confusing to the end users.

For example, pie.Rd contains

\note{
Pie charts are a very bad way of displaying information.
The eye is good at judging linear measures and bad at
judging relative areas.

\author{...}
Information about the author(s) of the Rd file. Use \email{} without extra delimiters
(such as ‘()’ or ‘< >’) to specify email addresses, or \url{} or \href{}{} for web
pointers.

\seealso{...}
Pointers to related R objects, using \code{\1link{...}} to refer to them (\code is
the correct markup for R object names, and \1ink produces hyperlinks in output
formats which support this. See Section 2.3 [Marking text|, page 91, and Section 2.5
[Cross-references|, page 93).

\examples{...}
Examples of how to use the function. Code in this section is set in typewriter font
without reformatting and is run by example() unless marked otherwise (see below).

Examples are not only useful for documentation purposes, but also provide test code
used for diagnostic checking of R code. By default, text inside \examples{} will
be displayed in the output of the help page and run by example() and by R CMD
check. You can use \dontrun{} for text that should only be shown, but not run,
and \dontshow{} for extra commands for testing that should not be shown to users,
but will be run by example(). (Previously this was called \testonly, and that is
still accepted.)

Text inside \dontrun{} is ‘verbatim’, but the other parts of the \examples section
are R-like text.

For example,

x <- runif (10) # Shown and run.
\dontrun{plot(x)} # Only shown.
\dontshow{log(x)} # Only run.

Thus, example code not included in \dontrun must be executable! In addition,
it should not use any system-specific features or require special facilities (such as
Internet access or write permission to specific directories). Text included in \dontrun
is indicated by comments in the processed help files: it need not be valid R code but

4 \describe can still be used for more general lists, including when \item labels need special markup such as
\var for metasyntactic variables, see Section 2.3 [Marking text], page 91.

Chapter 2: Writing R documentation files 88

the escapes must still be used for %, \ and unpaired braces as in other ‘verbatim’
text.

Example code must be capable of being run by example, which uses source. This
means that it should not access stdin, e.g. to scan() data from the example file.

Data needed for making the examples executable can be obtained by random number
generation (for example, x <- rnorm(100)), or by using standard data sets listed by
data() (see 7data for more info).

Finally, there is \donttest, used (at the beginning of a separate line) to mark code
that should be run by example() but not by R CMD check (by default: the option
--run-donttest can be used). This should be needed only occasionally but can be
used for code which might fail in circumstances that are hard to test for, for example
in some locales. (Use e.g. capabilities() or nzchar (Sys.which("someprogram"))
to test for features needed in the examples wherever possible, and you can also
use try() or tryCatch(). Use interactive() to condition examples which need
someone to interact with.) Note that code included in \donttest must be correct R
code, and any packages used should be declared in the DESCRIPTION file. It is good
practice to include a comment in the \donttest section explaining why it is needed.

Output from code marked with \dontdiff (requires R >= 4.4.0) or between comment
lines

IGNORE_RDIFF_BEGIN
IGNORE_RDIFF_END

is ignored when comparing check output to reference output (a pkg-Ex.Rout.save
file). The comment-based markup can also be used for scripts under tests.

\keyword{key}
There can be zero or more \keyword sections per file. Each \keyword section
should specify a single keyword, preferably one of the standard keywords as listed
in file KEYWORDS in the R documentation directory (default R_HOME/doc). Use e.g.
RShowDoc ("KEYWORDS") to inspect the standard keywords from within R. There can
be more than one \keyword entry if the R object being documented falls into more
than one category, or none.

Do strongly consider using \concept (see Section 2.9 [Indices|, page 96) instead of
\keyword if you are about to use more than very few non-standard keywords.

The special keyword ‘internal’ marks a page of internal topics (typically, objects
that are not part of the package’s API). If the help page for topic foo has keyword
‘internal’, then help(foo) gives this help page, but foo is excluded from several
topic indices, including the alphabetical list of topics in the HTML help system.

help.search() can search by keyword, including user-defined values: however
the ‘Search Engine & Keywords’ HTML page accessed via help.start() provides
single-click access only to a pre-defined list of keywords.

2.1.2 Documenting data sets

The structure of Rd files which document R data sets is slightly different. Sections such as
\arguments and \value are not needed but the format and source of the data should be
explained.

As an example, let us look at src/library/datasets/man/rivers.Rd which documents the
standard R data set rivers.

Chapter 2: Writing R documentation files 89

\name{rivers}

\docType{data}

\alias{rivers}

\title{Lengths of Major North American Rivers}

\description{
This data set gives the lengths (in miles) of 141 \dQuote{major}
rivers in North America, as compiled by the US Geological
Survey.

}

\usage{rivers}

\format{A vector containing 141 observations.}

\source{World Almanac and Book of Facts, 1975, page 406.3}

\references{
McNeil, D. R. (1977) \emph{Interactive Data Analysis}.
New York: Wiley.

}

\keyword{datasets}

-

This uses the following additional markup commands.

\docType{...}
Indicates the “type” of the documentation object. Always ‘data’ for data sets, and
‘package’ for pkg-package.Rd overview files. Documentation for S4 methods and
classes uses ‘methods’ (from promptMethods()) and ‘class’ (from promptClass()).

\format{...}
A description of the format of the data set (as a vector, matrix, data frame, time
series, ...). For matrices and data frames this should give a description of each
column, preferably as a list or table. See Section 2.4 [Lists and tables], page 93, for
more information.

\source{...}
Details of the original source (a reference or URL, see Section 1.1.8 [Specifying URLs],
page 20). In addition, section \references could give secondary sources and usages.

Note also that when documenting data set bar,

e The \usage entry is always bar or (for packages which do not use lazy-loading of data)
data(bar). (In particular, only document a single data object per Rd file.)

e The \keyword entry should always be ‘datasets’.

If bar is a data frame, documenting it as a data set can be initiated via prompt(bar).
Otherwise, the promptData function may be used.

2.1.3 Documenting S4 classes and methods

There are special ways to use the ‘?’ operator, namely ‘class?topic’ and ‘methods?topic’, to
access documentation for S4 classes and methods, respectively. This mechanism depends on
conventions for the topic names used in \alias entries. The topic names for S4 classes and
methods respectively are of the form

class-class
generic,signature_list-method

where signature_list contains the names of the classes in the signature of the method (without
quotes) separated by *,’ (without whitespace), with ‘ANY’ used for arguments without an explicit
specification. E.g., ‘genericFunction-class’ is the topic name for documentation for the S4
class "genericFunction", and ‘coerce, ANY,NULL-method’ is the topic name for documentation
for the S4 method for coerce for signature c("ANY", "NULL").

Chapter 2: Writing R documentation files 90

Skeletons of documentation for S4 classes and methods can be generated by using the functions
promptClass() and promptMethods() from package methods. If it is necessary or desired to
provide an explicit function declaration (in a \usage section) for an S4 method (e.g., if it has
“surprising arguments” to be mentioned explicitly), one can use the special markup

\S4method{generic}{signature_list}(argument_list)
(e.g., ‘\S4method{coerce}{ANY,NULL} (from, to)’).

To make full use of the potential of the on-line documentation system, all user-visible S4
classes and methods in a package should at least have a suitable \alias entry in one of the
package’s Rd files. If a package has methods for a function defined originally somewhere else, and
does not change the underlying default method for the function, the package is responsible for
documenting the methods it creates, but not for the function itself or the default method.

An S4 replacement method is documented in the same way as an S3 one: see the description
of \method in Section 2.1.1 [Documenting functions|, page 84.

See help("Documentation", package = "methods") for more information on using and cre-
ating on-line documentation for S4 classes and methods.

2.1.4 Documenting packages

Packages may have an overview help page with an \alias pkgname-package, e.g.
‘utils-package’ for the utils package, when package?pkgname will open that help page. If a
topic named pkgname does not exist in another R4 file, it is helpful to use this as an additional
\alias.

Skeletons of documentation for a package can be generated using the function
promptPackage (). If the final = TRUE argument is used, then the Rd file will be generated in
final form, containing only basic information from the DESCRIPTION file. Otherwise (the default)
comments will be inserted giving suggestions for content.

Apart from the mandatory \name and \title and the pkgname-package alias, the only
requirement for the package overview page is that it include a \docType{package} statement.
All other content is optional. We suggest that it should be a short overview, to give a reader
unfamiliar with the package enough information to get started. More extensive documentation is
better placed into a package vignette (see Section 1.4 [Writing package vignettes|, page 45) and
referenced from this page, or into individual man pages for the functions, datasets, or classes.

2.2 Sectioning

To begin a new paragraph or leave a blank line in an example, just insert an empty line (as in
(La)TEX). To break a line, use \cr.

In addition to the predefined sections (such as \description{}, \value{}, etc.), you can
“define” arbitrary ones by \section{section_title}{...}. For example

\section{Warning}{
You must not call this function unless ...

}

For consistency with the pre-assigned sections, the section name (the first argument to \section)
should be capitalized (but not all upper case) and not end in a period. Whitespace between the
first and second braced expressions is not allowed. Markup (e.g. \code) within the section title
may cause problems with the latex conversion (depending on the version of macro packages such
as ‘hyperref’) and so should be avoided.

The \subsection macro takes arguments in the same format as \section, but is used within
a section, so it may be used to nest subsections within sections or other subsections. There is no
predefined limit on the nesting level, but formatting is not designed for more than 3 levels (i.e.
subsections within subsections within sections).

Chapter 2: Writing R documentation files 91

Note that additional named sections are always inserted at a fixed position in the output
(before \note, \seealso and the examples), no matter where they appear in the input (but in
the same order amongst themselves as in the input).

2.3 Marking text

The following logical markup commands are available for emphasizing or quoting text.

\emph{text}

\strong{text}
Emphasize text using italic and bold font if possible; \strong is regarded as stronger
(more emphatic).

\bold{text}
Set text in bold font where possible.

\sQuote{text}

\dQuote{text}
Portably single or double quote text (without hard-wiring the characters used for
quotation marks).

Each of the above commands takes IXTEX-like input, so other macros may be used within
text.

The following logical markup commands are available for indicating specific kinds of text.
Except as noted, these take ‘verbatim’ text input, and so other macros may not be used within
them. Some characters will need to be escaped (see Section 2.8 [Insertions], page 95).

\code{text}
Indicate text that is a literal example of a piece of an R program, e.g., a fragment of
R code or the name of an R object. Text is entered in R-like syntax, and displayed
using typewriter font where possible. Macros \var and \1link are interpreted
within text.

\preformatted{text}
Indicate text that is a literal example of a piece of a program. Text is displayed
using typewriter font where possible. Formatting, e.g. line breaks, is preserved.
(Note that this includes a line break after the initial {, so typically text should start
on the same line as the command.)

Due to limitations in IATEX as of this writing, this macro may not be nested within
other markup macros other than \dQuote and \sQuote, as errors or bad formatting
may result.

\kbd{keyboard-characters}
Indicate keyboard input, using slanted typewriter font if possible, so users can
distinguish the characters they are supposed to type from computer output. Text is
entered ‘verbatim’.

\samp{text}
Indicate text that is a literal example of a sequence of characters, entered ‘verbatim’,
to be included within word-wrapped text. Displayed within single quotation marks
and using typewriter font where possible.

\verb{text}
Indicate text that is a literal example of a sequence of characters, entered ‘verbatim’.
No wrapping or reformatting will occur. Displayed using typewriter font where
possible.

Chapter 2: Writing R documentation files 92

\pkg{package_name}
Indicate the name of an R package. KTEX-like.

\file{file_name}
Indicate the name of a file. Text is IATEX-like, so backslash needs to be escaped.
Displayed using a distinct font where possible.

\email{email_address}
Indicate an electronic mail address. IATEX-like, will be rendered as a hyperlink in
HTML and PDF conversion. Displayed using typewriter font where possible.

\url{uniform_resource_locator}
Indicate a uniform resource locator (URL) for the World Wide Web. The argument
is handled as ‘verbatim’ text (with percent and braces escaped by backslash), and
rendered as a hyperlink in HTML and PDF conversion. Line feeds are removed, and
leading and trailing whitespace® is removed. See Section 1.1.8 [Specifying URLSs],
page 20.
Displayed using typewriter font where possible.

\href{uniform_resource_locator}{text}
Indicate a hyperlink to the World Wide Web. The first argument is handled as
‘verbatim’ text (with percent and braces escaped by backslash) and is used as the
URL in the hyperlink, with the second argument of IATEX-like text displayed to
the user. Line feeds are removed from the first argument, and leading and trailing
whitespace is removed.

Note that RFC3986-encoded URLs (e.g. using ‘%28VS.85%29’ in place of ‘(VS.85)7)
may not work correctly in versions of R before 3.1.3 and are best avoided—use
URLdecode () to decode them.

\var{metasyntactic_variable}
Indicate a metasyntactic variable. In most cases this will be rendered distinctly, e.g.
in italic (PDF/HTML) or wrapped in ‘<...>" (text), but not in all®. IATEX-like.

\env{environment_variable}
Indicate an environment variable. ‘Verbatim’. Displayed using typewriter font
where possible

\option{option}
Indicate a command-line option. ‘Verbatim’. Displayed using typewriter font where
possible.

\command{ command_name}
Indicate the name of a command. IXTEX-like, so \var is interpreted. Displayed using
typewriter font where possible.

\dfn{term}
Indicate the introductory or defining use of a term. KTEX-like.

\cite{reference}
Indicate a reference without a direct cross-reference via \link (see Section 2.5
[Cross-references|, page 93), such as the name of a book. IXTEX-like.

\acronym{acronym}
Indicate an acronym (an abbreviation written in all capital letters), such as GNU.

IATEX-like.

5 as defined by the R function trimws.

6 Currently it is rendered differently in HTML conversions, and in IANTEX and text conversion outside ‘\usage’
and ‘\examples’ environments.

Chapter 2: Writing R documentation files 93

\abbr{abbr}
Indicates an abbreviation. KTEX-like.

2.4 Lists and tables

The \itemize and \enumerate commands take a single argument, within which there may be one
or more \item commands. The text following each \item is formatted as one or more paragraphs,
suitably indented and with the first paragraph marked with a bullet point (\itemize) or a
number (\enumerate).

Note that unlike argument lists, \item in these formats is followed by a space and the text
(not enclosed in braces). For example

\enumerate{
\item A database consists of one or more records, each with one or
more named fields.
\item Regular lines start with a non-whitespace character.
\item Records are separated by one or more empty lines.

}
\itemize and \enumerate commands may be nested.

The \describe command is similar to \itemize but allows initial labels to be specified. Each
\item takes two arguments, the label and the body of the item, in exactly the same way as
an argument or value \item. \describe commands are mapped to <DL> lists in HTML and
\description lists in IATEX.

Using these without any \items may cause problems with some conversions and makes little
sense.

The \tabular command takes two arguments. The first gives for each of the columns the
required alignment (‘1’ for left-justification, ‘r’ for right-justification or ‘c’ for centring.) The
second argument consists of an arbitrary number of lines separated by \cr, and with fields
separated by \tab. For example:

\tabular{rl11}{
[,1] \tab Ozone \tab numeric \tab Ozone (ppb)\cr
[,2] \tab Solar.R \tab numeric \tab Solar R (lang)\cr
[,3] \tab Wind \tab numeric \tab Wind (mph)\cr
[,4] \tab Temp \tab numeric \tab Temperature (degrees F)\cr
[,5] \tab Month \tab numeric \tab Month (1--12)\cr
[,6] \tab Day \tab numeric \tab Day of month (1--31)
}

There must be the same number of fields on each line as there are alignments in the first argument,
and they must be non-empty (but can contain only spaces). (There is no whitespace between
\tabular and the first argument, nor between the two arguments.)

2.5 Cross-references

The markup \1link{foo} (usually in the combination \code{\1link{foo}}) produces a hyperlink
to the help for foo. Here foo is a topic, that is the argument of \alias markup in another Rd
file (possibly in another package). Hyperlinks are supported in some of the formats to which Rd
files are converted, for example HTML and PDF, but ignored in others, e.g. the text format.

One main usage of \link is in the \seealso section of the help page, see Section 2.1 [Rd
format], page 83.

Note that whereas leading and trailing spaces are stripped when extracting a topic from a
\alias, they are not stripped when looking up the topic of a \1ink.

Chapter 2: Writing R documentation files 94

You can specify a link to a different topic than its name by \1link[=dest] {name} which links
to topic dest with name name. This can be used to refer to the documentation for S3/4 classes,
for example \code{"\1link[=abc-class]{abc}"} would be a way to refer to the documentation
of an S4 class "abc" defined in your package, and \code{"\1link[=terms.object]{terms}"}
to the S3 "terms" class (in package stats). To make these easy to read in the source file,
\code{"\1inkS4class{abc}"} expands to the form given above.

There are two other forms with an optional ‘anchor’ argument, specified as \1ink [pkg]{foo}
and \1link [pkg:bar]{foo}, to link to topics foo and bar respectively in the package pkg. They
are currently only used in HTML help (and ignored for hyperlinks in KTEX conversions of help
pages). One should be careful about topics containing special characters (such as arithmetic
operators) as they may result in unresolvable links, and preferably use a safer alias in the same
help page.

Historically (before R version 4.1.0), links of the form \link[pkgl{foo} and
\link [pkg:bar]{foo} used to be interpreted as links to files foo.html and bar.html in
package pkg, respectively. For this reason, the HTML help system looks for file foo.html in
package pkg if it does not find topic foo, and then searches for the topic in other installed
packages. To test that links work both with both old and new systems, the pre-4.1.0 behaviour
can be restored by setting the environment variable _R_HELP_LINKS_TO_TOPICS_=false.

Packages referred to by these ‘other forms’ should be declared in the DESCRIPTION file, in the
‘Depends’, ‘Imports’, ‘Suggests’ or ‘Enhances’ fields.

2.6 Mathematics

Mathematical formulae should be set beautifully for printed documentation and in
KaTeX/MathJax-enhanced HTML help (as from R 4.2.0) yet we still want something useful for
plain-text (and legacy HTML) help. To this end, the two commands \eqn{latex}{ascii} and
\deqgn{latex}{ascii} are used. Whereas \eqn is used for “inline” formulae (corresponding to
TEX’s $...$), \deqn gives “displayed equations” (as in ATEX’s displaymath environment, or
TEX’s $$...$$). Both arguments are treated as ‘verbatim’ text.

Both commands can also be used as \eqn{latexascii} (only one argument) which then is
used for both latex and ascii. No whitespace is allowed between command and the first argument,
nor between the first and second arguments.

The following example is from Poisson.Rd:

\deqn{p(x) = \frac{\lambda"x e~{-\lambdal}}{x!}}{%
p(x) = \lambda"x exp(-\lambda)/x!'}
for \eqn{x = 0, 1, 2, \ldots}.

For the IXTEX manual and in enhanced HTML help, this becomes

Ae~A

z!

p(x)
forx=0,1,2,....

In plain-text help we get

p(x) = lambda"x exp(-lambda)/x!

for x =0, 1, 2,

In legacy HTML help, Greek letters (both cases) will be rendered if preceded by a backslash,
\dots and \1ldots will be rendered as ellipses and \sqrt, \ge and \le as mathematical symbols.

Chapter 2: Writing R documentation files 95

Note that only basic KTEX can be used, there being no provision to specify IXITEX style files,
but AMS extensions are supported as from R 4.2.2.

2.7 Figures

To include figures in help pages, use the \figure markup. There are three forms.

The two commonly wused simple forms are \figure{filename} and
\figure{filename}{alternate text}. This will include a copy of the figure in
either HTML or KTEX output. In text output, the alternate text will be displayed instead.
(When the second argument is omitted, the filename will be used.) Both the filename and
the alternate text will be parsed verbatim, and should not include special characters that are
significant in HTML or IATRX.

The expert form is \figure{filename}{options: string}. (The word ‘options:’ must be
typed exactly as shown and followed by at least one space.) In this form, the string is copied
into the HTML img tag as attributes following the src attribute, or into the second argument
of the \Figure macro in IATEX, which by default is used as options to an \includegraphics
call. As it is unlikely that any single string would suffice for both display modes, the expert
form would normally be wrapped in conditionals. It is up to the author to make sure that legal
HTML/IATEX is used. For example, to include a logo in both HTML (using the simple form) and
KTEX (using the expert form), the following could be used:

\if{html}{\figure{Rlogo.svg}{options: width=100 alt="R logo"1}}
\if{latex}{\figure{Rlogo.pdf}{options: width=0.5in}}

The files containing the figures should be stored in the directory man/figures. Files with ext-
ensions . jpg, - jpeg, -pdf, .png and .svg from that directory will be copied to the help/figures
directory at install time. (Figures in PDF format will not display in most HTML browsers, but
might be the best choice in reference manuals.) Specify the filename relative to man/figures in
the \figure directive.

2.8 Insertions

)

Use \R for the R system itself. The \dots macro is a historical alternative to using literal . ..
for the dots in function argument lists; use \1dots for ellipsis dots in ordinary text.” These
macros can be followed by {}, and should be unless followed by whitespace.

After an unescaped ‘%’, you can put your own comments regarding the help text. The rest of
the line (but not the newline at the end) will be completely disregarded. Therefore, you can also
use it to make part of the “help” invisible.

You can produce a backslash (‘\’) by escaping it by another backslash. (Note that \cr is
used for generating line breaks.)

The “comment” character ‘%’ and unpaired braces® almost always need to be escaped by
‘\’, and ‘\\’ can be used for backslash and needs to be when there are two or more adjacent
backslashes. In R-like code quoted strings are handled slightly differently; see “Parsing Rd files”
(https://developer.r-project.org/parseRd.pdf) for details — in particular braces should
not be escaped in quoted strings.

All of ‘% { } \’ should be escaped in INTEX-like text.

Text which might need to be represented differently in different encodings should be marked
by \enc, e.g. \enc{J6reskog}{Joreskog} (with no whitespace between the braces) where the

" There is only a fine distinction between \dots and \ldots. It is technically incorrect to use \1ldots in code
blocks and tools: :checkRd will warn about this—on the other hand the current converters treat them the
same way in code blocks, and elsewhere apart from the small distinction between the two in INTEX.

8 See the examples section in the file Paren.Rd for an example.

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 96

first argument will be used where encodings are allowed and the second should be ASCII (and is
used for e.g. the text conversion in locales that cannot represent the encoded form). (This is
intended to be used for individual words, not whole sentences or paragraphs.)

2.9 Indices

The \alias command (see Section 2.1.1 [Documenting functions], page 84) is used to specify
the “topics” documented, which should include all R objects in a package such as functions and
variables, data sets, and S4 classes and methods (see Section 2.1.3 [Documenting S4 classes and
methods|, page 89). The on-line help system searches the index data base consisting of all alias
topics.

In addition, it is possible to provide “concept index entries” using \concept, which can be
used for help.search() lookups. E.g., file cor.test.Rd in the standard package stats contains

\concept{Kendall correlation coefficient}
\concept{Pearson correlation coefficient}
\concept{Spearman correlation coefficient}
so that e.g. ??Spearman will succeed in finding the help page for the test for association between
paired samples using Spearman’s p.
(Note that help.search() only uses “sections” of documentation objects with no additional
markup.)
Each \concept entry should give a single index term (word or phrase), and not use any Rd
markup.
If you want to cross reference such items from other help files via \1ink, you need to use

\alias and not \concept.

2.10 Platform-specific documentation

Sometimes the documentation needs to differ by platform. Currently two OS-specific options are
available, ‘unix’ and ‘windows’, and lines in the help source file can be enclosed in

#ifdef 0S
t#tendif

or
#ifndef 0OS
#tendif

for OS-specific inclusion or exclusion. Such blocks should not be nested, and should be entirely
within a block (that, is between the opening and closing brace of a section or item), or at top-level
contain one or more complete sections.

If the differences between platforms are extensive or the R objects documented are only
relevant to one platform, platform-specific Rd files can be put in a unix or windows subdirectory.

2.11 Conditional text

Occasionally the best content for one output format is different from the best content for another.
For this situation, the \if{format}{text} or \ifelse{format}{text}{alternate} markup is
used. Here format is a comma separated list of formats in which the text should be rendered.
The alternate will be rendered if the format does not match. Both text and alternate may be
any sequence of text and markup.

Currently the following formats are recognized: example, html, latex and text. These select
output for the corresponding targets. (Note that example refers to extracted example code

Chapter 2: Writing R documentation files 97

rather than the displayed example in some other format.) Also accepted are TRUE (matching all
formats) and FALSE (matching no formats). These could be the output of the \Sexpr macro (see
Section 2.12 [Dynamic pages|, page 97).

The \out{literal} macro would usually be used within the text part of \if{format}{text}.
It causes the renderer to output the literal text exactly, with no attempt to escape special
characters. For example, use the following to output the markup necessary to display the Greek
letter in IXTEX or HTML, and the text string alpha in other formats:

\ifelse{latex}{\out{α}}{\ifelse{html}{\out{α}}{alphal}}

2.12 Dynamic pages

Two macros supporting dynamically generated man pages are \Sexpr and \RdOpts. These are
modelled after Sweave, and are intended to contain executable R expressions in the R4 file.
The main argument to \Sexpr must be valid R code that can be executed. It may also take
options in square brackets before the main argument. Depending on the options, the code may
be executed at package build time, package install time, or man page rendering time.
The options follow the same format as in Sweave, but different options are supported. Currently
the allowed options and their defaults are:

e ecval=TRUE Whether the R code should be evaluated.

o echo=FALSE Whether the R code should be echoed. If TRUE and
results=verbatim, a display will be given in a preformatted block. For
example, \Sexpr [echo=TRUE, results=verbatim]{ x <- 1 } will be displayed as

>x <=1

e keep.source=TRUE Whether to keep the author’s formatting when displaying the code, or
throw it away and use a deparsed version.
e results=text How should the results be displayed? The possibilities are:

— results=text Apply as.character() to the result of the code, and insert it as a text
element.

— results=verbatim Print the results of the code just as if it was executed at the console,
and include the printed results verbatim. (Invisible results will not print.)

— results=rd The result is assumed to be a character vector containing markup to be
passed to parse_Rd (), with the result inserted in place. This could be used to insert
computed aliases, for instance. parse_Rd() is called first with fragment = FALSE to
allow a single Rd section macro to be inserted. If that fails, it is called again with
fragment = TRUE, the older behavior.

— results=hide Insert no output.

e strip.white=true Remove leading and trailing blank lines in verbatim output if
strip.white=true (or TRUE). With strip.white=all, remove all blank lines.
e stage=install Control when this macro is run. Possible values are

— stage=build The macro is run when building a source tarball.

— stage=install The macro is run when installing from source.

— stage=render The macro is run when displaying the help page.

Conditionals such as #ifdef (see Section 2.10 [Platform-specific sections], page 96) are
applied after the build macros but before the install macros. In some situations (e.g.
installing directly from a source directory without a tarball, or building a binary package)
the above description is not literally accurate, but authors can rely on the sequence being
build, #ifdef, install, render, with all stages executed.

Code is only run once in each stage, so a \Sexpr [results=rd] macro can output an \Sexpr
macro designed for a later stage, but not for the current one or any earlier stage.

Chapter 2: Writing R documentation files 98

e width, height, fig These options are currently allowed but ignored.

The \RdOpts macro is used to set new defaults for options to apply to following uses of
\Sexpr.

For more details, see the online document “Parsing Rd files” (https://developer.
r-project.org/parseRd.pdf).

2.13 User-defined macros

The \newcommand and \renewcommand macros allow new macros to be defined within an Rd file.
These are similar but not identical to the same-named IXTEX macros.

They each take two arguments which are parsed verbatim. The first is the name of the
new macro including the initial backslash, and the second is the macro definition. As in
IATEX, \newcommand requires that the new macro not have been previously defined, whereas
\renewcommand allows existing macros (including all built-in ones) to be replaced. (This test is
disabled by default, but may be enabled by setting the environment variable _R_WARN_DUPLICATE_
RD_MACROS_ to a true value.)

Also as in I{TEX, the new macro may be defined to take arguments, and numeric placeholders
such as #1 are used in the macro definition. However, unlike IATEX, the number of arguments is
determined automatically from the highest placeholder number seen in the macro definition. For
example, a macro definition containing #1 and #3 (but no other placeholders) will define a three
argument macro (whose second argument will be ignored). As in ITEX, at most 9 arguments may
be defined. If the # character is followed by a non-digit it will have no special significance. All
arguments to user-defined macros will be parsed as verbatim text, and simple text-substitution
will be used to replace the place-holders, after which the replacement text will be parsed.

A number of macros are defined in the file share/Rd/macros/system.Rd of the R source
or home directory, and these will normally be available in all .Rd files. For example, that file
contains the definition

\newcommand{\PR}{\Sexpr [results=rd]{tools:::Rd_expr_PR(#1)}}
which defines \PR to be a single argument macro; then code (typically used in the NEWS.Rd file)
like

\PR{1234}
will expand to

\Sexpr[results=rd]{tools:::Rd_expr_PR(1234)}
when parsed.

Some macros that might be of general use are:

\CRANpkg{pkg?}
A package on CRAN

\sspace A single space (used after a period that does not end a sentence).

\doi{identifier}
A digital object identifier (DOI).

See the system.Rd file in share/Rd/macros for more details and macro definitions, includ-
ing macros \packageTitle, \packageDescription, \packageAuthor, \packageMaintainer,
\packageDESCRIPTION and \packageIndices.

Packages may also define their own common macros; these would be stored in an .Rd4 file
in man/macros in the package source and will be installed into help/macros when the package
is installed. A package may also use the macros from a different package by listing the other
package in the ‘RdMacros’ field in the DESCRIPTION file.

https://developer.r-project.org/parseRd.pdf
https://developer.r-project.org/parseRd.pdf

Chapter 2: Writing R documentation files 99

2.14 Encoding

Rd files are text files and so it is impossible to deduce the encoding they are written in unless
ASCITI: files with 8-bit characters could be UTF-8, Latin-1, Latin-9, KOI8-R, EUC-JP, etc. So an
\encoding{} section must be used to specify the encoding if it is not ASCII. (The \encoding{}
section must be on a line by itself, and in particular one containing no non-ASCII characters. The
encoding declared in the DESCRIPTION file will be used if none is declared in the file.) The Rd
files are converted to UTF-8 before parsing and so the preferred encoding for the files themselves
is now UTF-8.

Wherever possible, avoid non-ASCII chars in Rd files, and even symbols such as ‘<’, >7, ‘§’,
g) @, 77 and ‘+7 outside ‘verbatim’ environments (since they may disappear in fonts
designed to render text). (Function showNonASCIIfile in package tools can help in finding
non-ASCII bytes in the files.)

For convenience, encoding names ‘latinl’ and ‘latin2’ are always recognized: these and
‘UTF-8’ are likely to work fairly widely. However, this does not mean that all characters in UTF-8
will be recognized, and the coverage of non-Latin characters? is fairly low. Using ITEX inputenx
(see ?Rd2pdf in R) will give greater coverage of UTF-8.

The \enc command (see Section 2.8 [Insertions|, page 95) can be used to provide transliterat-
ions which will be used in conversions that do not support the declared encoding.

The BTEX conversion converts the file to UTF-8 from the declared encoding, and includes a
\inputencoding{utf8}

command, and this needs to be matched by a suitable invocation of the \usepackage{inputenc}
command. The R utility R CMD Rd2pdf looks at the converted code and includes the encodings
used: it might for example use

\usepackage [utf8]{inputenc}

(Use of utf8 as an encoding requires IWTEX dated 2003/12/01 or later. Also, the use of Cyrillic
characters in ‘UTF-8’ appears to also need ‘\usepackage [T2A]{fontenc}’, and R CMD Rd2pdf
includes this conditionally on the file t2aenc.def being present and environment variable
_R_CYRILLIC_TEX_ being set.)

Note that this mechanism works best with Latin letters: the coverage of UTF-8 in ITEX is
quite low.

2.15 Processing documentation files
There are several commands to process Rd files from the system command line.

Using R CMD Rdconv one can convert R documentation format to other formats, or extract
the executable examples for run-time testing. The currently supported conversions are to plain
text, HTML and IATEX as well as extraction of the examples.

R CMD Rd2pdf generates PDF output from documentation in Rd files, which can be specified
either explicitly or by the path to a directory with the sources of a package. In the latter case, a
reference manual for all documented objects in the package is created, including the information
in the DESCRIPTION files.

R CMD Sweave and R CMD Stangle process vignette-like documentation files (e.g. Sweave vign-
ettes with extension ‘.Snw’ or ‘.Rnw’, or other non-Sweave vignettes). R CMD Stangle is used to
extract the R code fragments.

9 R 2.9.0 added support for UTF-8 Cyrillic characters in IATEX, but on some OSes this will need Cyrillic support
added to IATEX, so environment variable _R_CYRILLIC_TEX_ may need to be set to a non-empty value to enable
this.

Chapter 2: Writing R documentation files 100

The exact usage and a detailed list of available options for all of these commands can be
obtained by running R CMD command --help, e.g., R CMD Rdconv —-help. All available commands
can be listed using R --help (or Rcmd --help under Windows).

All of these work under Windows. You may need to have installed the the tools to build
packages from source as described in the “R Installation and Administration” manual, although
typically all that is needed is a XTEX installation.

2.16 Editing Rd files

It can be very helpful to prepare .Rd files using a editor which knows about their syntax and will
highlight commands, indent to show the structure and detect mis-matched braces, and so on.

The system most commonly used for this is some version of Emacs (including XEmacs) with
the ESS package (https://ESS.R-project.org/: it is often is installed with Emacs but may
need to be loaded, or even installed, separately).

Another is the Eclipse IDE with the Stat-ET plugin (https://projects.eclipse.org/
projects/science.statet), and (on Windows only) Tinn-R (https://sourceforge.net/
projects/tinn-r/).

People have also used IXTEX mode in a editor, as .Rd files are rather similar to IATEX files.

Some R front-ends provide editing support for .Rd files, for example RStudio (https://
posit.co/).

https://ESS.R-project.org/
https://projects.eclipse.org/projects/science.statet
https://projects.eclipse.org/projects/science.statet
https://sourceforge.net/projects/tinn-r/
https://sourceforge.net/projects/tinn-r/
https://posit.co/
https://posit.co/

101

3 Tidying and profiling R code

R code which is worth preserving in a package and perhaps making available for others to use is
worth documenting, tidying up and perhaps optimizing. The last two of these activities are the
subject of this chapter.

3.1 Tidying R code

R treats function code loaded from packages and code entered by users differently. By default
code entered by users has the source code stored internally, and when the function is listed, the
original source is reproduced. Loading code from a package (by default) discards the source code,
and the function listing is re-created from the parse tree of the function.

Normally keeping the source code is a good idea, and in particular it avoids comments being
removed from the source. However, we can make use of the ability to re-create a function
listing from its parse tree to produce a tidy version of the function, for example with consistent
indentation and spaces around operators. If the original source does not follow the standard
format this tidied version can be much easier to read.

We can subvert the keeping of source in two ways.
1. The option keep.source can be set to FALSE before the code is loaded into R.

2. The stored source code can be removed by calling the removeSource () function, for example
by

myfun <- removeSource (myfun)

In each case if we then list the function we will get the standard layout.

Suppose we have a file of functions myfuns.R that we want to tidy up. Create a file tidy.R
containing

source("myfuns.R", keep.source = FALSE)
dump(ls(all.names = TRUE), file = "new.myfuns.R")

and run R with this as the source file, for example by R --vanilla < tidy.R or by pasting into
an R session. Then the file new.myfuns.R will contain the functions in alphabetical order in the
standard layout. Warning: comments in your functions will be lost.

The standard format provides a good starting point for further tidying. Although the deparsing
cannot do so, we recommend the consistent use of the preferred assignment operator ‘<-’ (rather
than ‘=") for assignment. Many package authors use a version of Emacs (on a Unix-alike or
Windows) to edit R code, using the ESS[S] mode of the ESS Emacs package. See Section “R
coding standards” in R Internals for style options within the ESS[S] mode recommended for the
source code of R itself.

3.2 Profiling R code for speed

It is possible to profile R code on Windows and most! Unix-alike versions of R.

The command Rprof is used to control profiling, and its help page can be consulted for full
details. Profiling works by recording at fixed intervals? (by default every 20 msecs) which line
in which R function is being used, and recording the results in a file (default Rprof.out in the
working directory). Then the function summaryRprof or the command-line utility R CMD Rprof
Rprof.out can be used to summarize the activity.

1 R has to be built to enable this, but the option --enable-R-profiling is the default.

2 For Unix-alikes by default these are intervals of CPU time, and for Windows of elapsed (‘wall-clock’) time.
As from R 4.4.0, elapsed time is optional on Unix-alikes

Chapter 3: Tidying and profiling R code 102

As an example, consider the following code (from Venables & Ripley, 2002, pp. 225-6).

library(MASS); library(boot)
storm.fm <- nls(Time ~ b*Viscosity/(Wt - c), stormer,
start = c(b=30.401, ¢=2.2183))
st <- cbind(stormer, fit=fitted(storm.fm))
storm.bf <- function(rs, i) {
st$Time <- st$fit + rs[i]
tmp <- nls(Time ~ (b * Viscosity)/(Wt - c¢), st,
start = coef(storm.fm))
tmp$mPgetAllPars ()
}
rs <- scale(resid(storm.fm), scale
Rprof ("boot.out")
storm.boot <- boot(rs, storm.bf, R
Rprof (NULL)

FALSE) # remove the mean

4999) # slow enough to profile

Having run this we can summarize the results by
R CMD Rprof boot.out

Each sample represents 0.02 seconds.
Total run time: 22.52 seconds.

Total seconds: time spent in function and callees.
Self seconds: time spent in function alonme.

% total % self
total seconds self seconds name
100.0 25.22 0.2 0.04 "boot"
99.8 25.18 0.6 0.16 "statistic"
96.3 24.30 4.0 1.02 "nls"
33.9 8.56 2.2 0.56 "<Anonymous>"
32.4 8.18 1.4 0.36 "eval"
31.8 8.02 1.4 0.34 ".Call"
28.6 7.22 0.0 0.00 "eval.parent"
28.5 7.18 0.3 0.08 "model.frame"
28.1 7.10 3.5 0.88 "model.frame.default"
17.4 4.38 0.7 0.18 "sapply"
15.0 3.78 3.2 0.80 "nlsModel"
12.5 3.16 1.8 0.46 "lapply"
12.3 3.10 2.7 0.68 "assign"
% self % total
self seconds total seconds name
5.7 1.44 7.5 1.88 "inherits"
4.0 1.02 96.3 24.30 "nls"
3.6 0.92 3.6 0.92 g
3.5 0.88 28.1 7.10 "model.frame.default"
3.2 0.80 15.0 3.78 "nlsModel"
2.8 0.70 9.8 2.46 "qr.coef"
2.7 0.68 12.3 3.10 "assign"
2.5 0.64 2.5 0.64 " . Fortran"
2.5 0.62 7.1 1.80 "gr.default"
2.2 0.56 33.9 8.56 "<Anonymous>"
2.1 0.54 5.9 1.48 "unlist"
2.1 0.52 7.9 2.00 "FUN"

This often produces surprising results and can be used to identify bottlenecks or pieces of R code
that could benefit from being replaced by compiled code.

Two warnings: profiling does impose a small performance penalty, and the output files can be
very large if long runs are profiled at the default sampling interval.

Profiling short runs can sometimes give misleading results. R from time to time performs
garbage collection to reclaim unused memory, and this takes an appreciable amount of time

Chapter 3: Tidying and profiling R code 103

which profiling will charge to whichever function happens to provoke it. It may be useful to
compare profiling code immediately after a call to gc() with a profiling run without a preceding
call to gc.

More detailed analysis of the output can be achieved by the tools in the CRAN packages
proftools (https://CRAN.R-project.org/package=proftools) and profr (https://CRAN.
R-project.org/package=profr): in particular these allow call graphs to be studied.

3.3 Profiling R code for memory use

Measuring memory use in R code is useful either when the code takes more memory than is
conveniently available or when memory allocation and copying of objects is responsible for slow
code. There are three ways to profile memory use over time in R code. The second and third
require R to have been compiled with --enable-memory-profiling, which is not the default,
but is currently used for the macOS and Windows binary distributions. All can be misleading,
for different reasons.

In understanding the memory profiles it is useful to know a little more about R’s memory
allocation. Looking at the results of gc() shows a division of memory into Vcells used to store
the contents of vectors and Ncells used to store everything else, including all the administrative
overhead for vectors such as type and length information. In fact the vector contents are divided
into two pools. Memory for small vectors (by default 128 bytes or less) is obtained in large
chunks and then parcelled out by R; memory for larger vectors is obtained directly from the
operating system.

Some memory allocation is obvious in interpreted code, for example,
y<-x+1
allocates memory for a new vector y. Other memory allocation is less obvious and occurs because
R is forced to make good on its promise of ‘call-by-value’ argument passing. When an argument
is passed to a function it is not immediately copied. Copying occurs (if necessary) only when
the argument is modified. This can lead to surprising memory use. For example, in the ‘survey’
package we have

print.svycoxph <- function (x, ...)

{
print(x$survey.design, varnames = FALSE, design.summaries = FALSE, ...)
x$call <- x$printcall
NextMethod ()

}

It may not be obvious that the assignment to x$call will cause the entire object x to be copied.
This copying to preserve the call-by-value illusion is usually done by the internal C function
Rf_duplicate.

The main reason that memory-use profiling is difficult is garbage collection. Memory is
allocated at well-defined times in an R program, but is freed whenever the garbage collector
happens to run.

3.3.1 Memory statistics from Rprof

The sampling profiler Rprof described in the previous section can be given the option
memory.profiling=TRUE. It then writes out the total R memory allocation in small vectors,
large vectors, and cons cells or nodes at each sampling interval. It also writes out the number of
calls to the internal function Rf_duplicate, which is called to copy R objects. summaryRprof
provides summaries of this information. The main reason that this can be misleading is that
the memory use is attributed to the function running at the end of the sampling interval. A
second reason is that garbage collection can make the amount of memory in use decrease, so a
function appears to use little memory. Running under gctorture helps with both problems: it

https://CRAN.R-project.org/package=proftools
https://CRAN.R-project.org/package=profr
https://CRAN.R-project.org/package=profr

Chapter 3: Tidying and profiling R code 104

slows down the code to effectively increase the sampling frequency and it makes each garbage
collection release a smaller amount of memory.

3.3.2 Tracking memory allocations

The second method of memory profiling uses a memory-allocation profiler, Rprofmem(), which
writes out a stack trace to an output file every time a large vector is allocated (with a user-
specified threshold for ‘large’) or a new page of memory is allocated for the R heap. Summary
functions for this output are still being designed.

Running the example from the previous section with

> Rprofmem("boot.memprof",threshold=1000)

> storm.boot <- boot(rs, storm.bf, R = 4999)

> Rprofmem(NULL)
shows that apart from some initial and final work in boot there are no vector allocations over
1000 bytes.

3.3.3 Tracing copies of an object

The third method of memory profiling involves tracing copies made of a specific (presumably
large) R object. Calling tracemem on an object marks it so that a message is printed to standard
output when the object is copied via Rf_duplicate or coercion to another type, or when a new
object of the same size is created in arithmetic operations. The main reason that this can be
misleading is that copying of subsets or components of an object is not tracked. It may be helpful
to use tracemem on these components.

In the example above we can run tracemem on the data frame st

> tracemem(st)
[1] "<0x9abd5e0>"
> storm.boot <- boot(rs, storm.bf, R = 4)

memtrace [0x9abd5e0->0x92a6d08] :

statistic boot

memtrace [0x92a6d08->0x92a6d80] : $<-.data.frame $<- statistic boot
memtrace [0x92a6d80->0x92a6df8] : $<-.data.frame $<- statistic boot
memtrace [0x9abd5e0->0x9271318] : statistic boot

memtrace [0x9271318->0x9271390] : $<-.data.frame $<- statistic boot
memtrace [0x9271390->0x9271408] : $<-.data.frame $<- statistic boot
memtrace [0x9abd5e0->0x914f558] : statistic boot

memtrace [0x914f558->0x914f5f8]: $<-.data.frame $<- statistic boot
memtrace [0x914f5f8->0x914f670] : $<-.data.frame $<- statistic boot
memtrace [0x9abd5e0->0x972cbf0] : statistic boot

memtrace [0x972cbf0->0x972cc68] : $<-.data.frame $<- statistic boot
memtrace [0x972cc68->0x972cd08] : $<-.data.frame $<- statistic boot
memtrace [0x9abd5e0->0x98ead98] : statistic boot

memtrace [0x98ead98->0x98eae10] : $<-.data.frame $<- statistic boot
memtrace [0x98eael10->0x98eae88] : $<-.data.frame $<- statistic boot

The object is duplicated fifteen times, three times for each of the R+1 calls to storm.bf. This is
surprising, since none of the duplications happen inside nls. Stepping through storm.bf in the
debugger shows that all three happen in the line
st$Time <- st$fit + rs[i]
Data frames are slower than matrices and this is an example of why. Using
tracemem(st$Viscosity) does not reveal any additional copying.

3.4 Profiling compiled code

Profiling compiled code is highly system-specific, but this section contains some hints gleaned
from various R users. Some methods need to be different for a compiled executable and for
dynamic/shared libraries/objects as used by R packages.

This chapter is based on reports from users and the information may not be current.

Chapter 3: Tidying and profiling R code 105

3.4.1 Profiling on Linux

Options include using sprof for a shared object, and oprofile (see https://oprofile.
sourceforge.io/news/) and perf (see https://perfwiki.github.io/) for any executable
or shared object. These seem less widely supplied than they used to be. There is also ‘Google
Performance Tools’, also known as gperftools or google-perftools.

All of these work best when R and any packages have been built with debugging symbols.
3.4.1.1 perf

This seems the most widely distributed tool. Here is an example on x86_64 Linux using R 4.3.1
built with LTO.

At its simplest

perf record R -f tests/Examples/stats-Ex.R
perf report --sort=dso

perf report —-sort=srcfile

rm perf.datax

The first report is

.67% R

.25% 1libc.so.6

.87% [unknown]

.75% 1libz.so.1.2.11
.37% stats.so

.17% 1libm.so.6

.63% 1libtirpc.s0.3.0.0
.41% graphics.so

.30% grDevices.so

.20% 1ibRblas.so

.09% libpcre2-8.s0.0.11.0
.07% methods.so

~
ol

O O OO OO WWh oo

which shows which shared libraries (DSOs) the time was spent in.

perf annotate can be used on an application built with GCC and -ggdb: it interleaves
disassembled and source code.

3.4.1.2 oprofile and operf

The oprofile project has two modes of operation. Since version 0.9.8 (August 2012), the
preferred mode is to use operf, so we discuss only that.

Let us look at the boot example from §3.2 on x86_64 Linux using R 4.3.1.
This can be run under operf and analysed by commands like
operf R -f boot.R
opreport
opreport -1 /path/to/R_HOME/bin/exec/R
opreport -1 /path/to/R_HOME/library/stats/src/stats.so
opannotate --source /path/to/R_HOME/bin/exec/R
The first line had to be done as root.

The first report shows in which library (etc) the time was spent:

CPU_CLK_UNHALT. .. |
samples| hl

https://oprofile.sourceforge.io/news/
https://oprofile.sourceforge.io/news/
https://perfwiki.github.io/

Chapter 3: Tidying and profiling R code 106

278341
18290
2277
1426
739
554
373
352
153

12

(kallsyms is the kernel.)

91.9947

O O O O OO O OO’

.0450
. 7526
L4713
.24432
.1831
.1233
.1163
.0506
.0040

R

libc.so.6

kallsyms

stats.so

libRblas.so
libz.so0.1.2.11
libm.so.6
libtirpc.s0.3.0.0
1d-1inux-x86-64.s0.2
methods.so

The rest of the output is voluminous, and only extracts are shown.

Most of the time within R is spent in

samples
52955
16484
14224
12581
8289
8034
7114
6552
5969
5684
5497
4827
4609
4317
4035
3491
3179
2892

b

19.

5
5
4
2
2
2
2
2.
2
1
1
1
1
1
1
1
1

0574
.9322
.1189
.5276
.9830
.8913
.5602
.3579
1481
.0456
.9783
L7371
.6587
.55636
.4521
.2563
.1441
.0408

and in stats.so

samples
285
284
213
114
55
47
37
32
25
20
20
15

YA

24.
24.
18.

R R NN WD DO

4845
3986
2990
.7938
.7251
.0378
.1787
. 7491
.1478
.7182
. 7182
. 2887

image name symbol name

PP HW PP HH PP ODHDHDHIDTD

image

stats.
stats.
stats.
stats.
stats.
stats.
stats.
stats.
stats.
stats.
stats.
stats.

bcEval.lto_priv.0
Rf_allocVector3
Rf_findVarInFrame3
CONS_NR

Rf_matchArgs_NR

Rf_cons
R_gc_internal.lto_priv.0
Rf_eval

VECTOR_ELT
Rf_applyClosure
findVarLocInFrame.part.0.lto_priv.0
Rf_mkPROMISE

Rf_install

Rf_findFun3
getvar.lto_priv.0

SETCAR

Rf_defineVar
duplicatel.lto_priv.0O

name symbol name
so termsform

so numeric_deriv
so modelframe

so nls_iter

so ExtractVars
so EncodeVars

S0 getListElement
so TrimRepeats
so InstallVar

so MatchVar

SO isZeroOne

S1e]

ConvInfoMsg.isra.0

The profiling data is by default stored in sub-directory oprofile_data of the current directory.
which can be removed at the end of the session.

Chapter 3: Tidying and profiling R code 107

3.4.1.3 sprof

You can select shared objects to be profiled with sprof by setting the environment variable
LD_PROFILE. For example
% setenv LD_PROFILE /path/to/R_HOME/library/stats/libs/stats.so
% R -f boot.R
% sprof /path/to/R_HOME/library/stats/libs/stats.so \
/var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

Flat profile:

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls wus/call wus/call name
76.19 0.32 0.32 0 0.00 numeric_deriv
16.67 0.39 0.07 0 0.00 nls_iter

7.14 0.42 0.03 0 0.00 getListElement

. to clean up ...
rm /var/tmp/path/to/R_HOME/library/stats/libs/stats.so.profile

It is possible that root access will be needed to create the directories used for the profile data.

3.4.2 Profiling on macOS

Developers have recommended Instruments (part of Xcode, see https://help.apple.com/
instruments/mac/current/), This had a command-line version prior to macOS 12.

3.4.3 Profiling on Windows

Very Sleepy (https://github.com/VerySleepy/verysleepy) has been used on ‘x86_64" Win-
dows. There were problems with accessing the debug information, but the best results which
included function names were obtained by attaching the profiler to an existing Rterm process,
either via GUI or using /a: (PID obtained via Sys.getpid()).

https://help.apple.com/instruments/mac/current/
https://help.apple.com/instruments/mac/current/
https://github.com/VerySleepy/verysleepy

108

4 Debugging

This chapter covers the debugging of R extensions, starting with the ways to get useful error
information and moving on to how to deal with errors that crash R.

4.1 Browsing

Most of the R-level debugging facilities are based around the built-in browser. This can be
used directly by inserting a call to browser () into the code of a function (for example, using
fix(my_function)). When code execution reaches that point in the function, control returns
to the R console with a special prompt. For example

> fix(summary.data.frame) ## insert browser() call after for() loop
> summary (women)

Called from: summary.data.frame(women)

Browse[1]> 1sQ)

[1] "digits" "i" "lbs" "lw" "maxsum" "ncw" "nm" "nr"
[9] ||nVll "Object" "SmS“ "zll
Browse[1]> maxsum
[11 7
Browse[1]> ¢
height weight

Min. :58.0 Min. :115.0

1st Qu.:61.5 1st Qu.:124.5
Median :65.0 Median :135.0

Mean :65.0 Mean :136.7

3rd Qu.:68.5 3rd Qu.:148.0

Max. :72.0 Max. :164.0

> rm(summary.data.frame)

At the browser prompt one can enter any R expression, so for example 1s() lists the objects in
the current frame, and entering the name of an object will! print it. The following commands
are also accepted

en
Enter ‘step-through’ mode. In this mode, hitting the return key (RET) executes the next
line of code (more precisely one line and any continuation lines). Typing c will continue to
the end of the current context, e.g. to the end of the current loop or function.

e C
In normal mode, this quits the browser and continues execution, and just return works in
the same way. cont is a synonym.

e vwhere
This prints the call stack. For example

> summary (women)

Called from: summary.data.frame(women)
Browse[1]> where

where 1: summary.data.frame(women)
where 2: summary(women)

Browse[1]>

1 With the exceptions of the commands listed below: an object of such a name can be printed via an explicit
call to print.

Chapter 4: Debugging 109

e Q

Quit both the browser and the current expression, and return to the top-level prompt.

Errors in code executed at the browser prompt will normally return control to the browser
prompt. Objects can be altered by assignment, and will keep their changed values when the
browser is exited. If really necessary, objects can be assigned to the workspace from the browser
prompt (by using <<- if the name is not already in scope).

4.2 Debugging R code

Suppose your R program gives an error message. The first thing to find out is what R was doing
at the time of the error, and the most useful tool is traceback(). We suggest that this is run
whenever the cause of the error is not immediately obvious. Errors are often reported to the R
mailing lists as being in some package when traceback() would show that the error was being
reported by some other package or base R. Here is an example from the regression suite.

> success <- c(13,12,11,14,14,11,13,11,12)

> failure <- ¢(0,0,0,0,0,0,0,2,2)

> resp <- cbind(success, failure)

> predictor <- c(0, 57(0:7))

> glm(resp ~ O+predictor, family = binomial(link="log"))

Error: no valid set of coefficients has been found: please supply starting values

> traceback()

3: stop("no valid set of coefficients has been found: please supply

starting values", call. = FALSE)
2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,
mustart = mustart, offset = offset, family = family, control = control,
intercept = attr(mt, "intercept") > 0)

1: glm(resp ~ O + predictor, family = binomial(link ="log"))
The calls to the active frames are given in reverse order (starting with the innermost). So we
see the error message comes from an explicit check in glm.fit. (traceback() shows you all the

lines of the function calls, which can be limited by setting option "deparse.max.lines".)

Sometimes the traceback will indicate that the error was detected inside compiled code, for

example (from ?nls)

Error in nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE)

step factor 0.000488281 reduced below ’minFactor’ of 0.000976563

> traceback()

2: .Call(R_nls_iter, m, ctrl, trace)

1: nls(y ~ a + b * x, start = list(a = 0.12345, b = 0.54321), trace = TRUE)
This will be the case if the innermost call is to .C, .Fortran, .Call, .External or .Internal,
but as it is also possible for such code to evaluate R expressions, this need not be the innermost
call, as in

> traceback()

9: gm(a, b, x)

8: .Call(R_numeric_deriv, expr, theta, rho, dir)

7: numericDeriv(form[[3]], names(ind), env)

6: getRHS(Q)

5: assign("rhs", getRHS(), envir = thisEnv)

4: assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)
3: function (newPars)

{
setPars (newPars)
assign("resid", .swts * (lhs - assign("rhs", getRHS(), envir = thisEnv)),

envir = thisEnv)

assign("dev", sum(resid”2), envir = thisEnv)
assign("QR", qr(.swts * attr(rhs, "gradient")), envir = thisEnv)
return(QR$rank < min(dim(QR$qr)))

}(c(-0.00760232418963883, 1.00119632515036))

Chapter 4: Debugging 110

2: .Call(R_nls_iter, m, ctrl, trace)
1: nls(yeps ~ gm(a, b, x), start = list(a = 0.12345, b = 0.54321))
Occasionally traceback() does not help, and this can be the case if S4 method dispatch is
involved. Consider the following example

> xyd <- new("xyloc", x=runif(20), y=runif(20))

Error in as.environment(pkg) : no item called "package:S4nswv"

on the search list

Error in initialize(value, ...) : S language method selection got

an error when called from internal dispatch for function ’initialize’
> traceback()

2: initialize(value, ...)

1: new("xyloc", x = runif(20), y = runif(20))

which does not help much, as there is no call to as.environment in initialize (and the note
“called from internal dispatch” tells us so). In this case we searched the R sources for the quoted
call, which occurred in only one place, methods: : : .asEnvironmentPackage. So now we knew
where the error was occurring. (This was an unusually opaque example.)

The error message
evaluation nested too deeply: infinite recursion / options(expressions=)7?

can be hard to handle with the default value (5000). Unless you know that there actually is deep
recursion going on, it can help to set something like

options(expressions=500)
and re-run the example showing the error.

Sometimes there is warning that clearly is the precursor to some later error, but it is not
obvious where it is coming from. Setting options(warn = 2) (which turns warnings into errors)
can help here.

Once we have located the error, we have some choices. One way to proceed is to find out
more about what was happening at the time of the crash by looking a post-mortem dump. To
do so, set options(error=dump.frames) and run the code again. Then invoke debugger () and
explore the dump. Continuing our example:

> options(error = dump.frames)
> glm(resp ~ O + predictor, family = binomial(link ="log"))
Error: no valid set of coefficients has been found: please supply starting values

which is the same as before, but an object called last.dump has appeared in the workspace.
(Such objects can be large, so remove it when it is no longer needed.) We can examine this at a
later time by calling the function debugger.

> debugger ()

Message: Error: no valid set of coefficients has been found: please supply starting values
Available environments had calls:

1: glm(resp ~ O + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart, mus

3: stop("no valid set of coefficients has been found: please supply starting values

Enter an environment number, or O to exit Selection:

which gives the same sequence of calls as traceback, but in outer-first order and with only the
first line of the call, truncated to the current width. However, we can now examine in more
detail what was happening at the time of the error. Selecting an environment opens the browser
in that frame. So we select the function call which spawned the error message, and explore some
of the variables (and execute two function calls).

Enter an environment number, or O to exit Selection: 2
Browsing in the environment with call:

glm.fit(x = X, y = Y, weights = weights, start = start, etas
Called from: debugger.look(ind)
Browse[1]> 1s()

Chapter 4: Debugging 111

[1] "aic" "boundary" "coefold" "control" "conv"
[6] "dev" "dev.resids" "devold" "EMPTY" "eta"
[11] "etastart" "family" "fit" "good" "intercept"
[16] "iter" "linkinv" "mu" "mu.eta" "mu.eta.val"
[21] "mustart" "n" "ngoodobs" "nobs" "nvars"
[26] "offset" "start" "valideta" "validmu" "variance"
[31] "Varmu" "W" "weights" IIXII "xnames"
[36] uyn "ynames" Ilzll
Browse[1]> eta
1 2 3 4 5
0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04
6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01

Browse[1]> valideta(eta)

(1] TRUE

Browse[1]> mu
1 2 3 4 5 6 7 8

1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755
9

0.8397616

Browse[1]> validmu(mu)

(1] FALSE

Browse[1]> ¢

Available environments had calls:

1: glm(resp ~ O + predictor, family = binomial(link = "log"))

2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

3: stop("no valid set of coefficients has been found: please supply starting v

Enter an environment number, or O to exit Selection: O
> rm(last.dump)

Because last . dump can be looked at later or even in another R session, post-mortem debugging
is possible even for batch usage of R. We do need to arrange for the dump to be saved: this can
be done either using the command-line flag —-save to save the workspace at the end of the run,
or via a setting such as

> options(error = quote({dump.frames(to.file=TRUE); q(O}))
See the help on dump.frames for further options and a worked example.

An alternative error action is to use the function recover():

> options(error = recover)
> glm(resp ~ O + predictor, family = binomial(link = "log"))
Error: no valid set of coefficients has been found: please supply starting values

Enter a frame number, or O to exit

1: glm(resp ~ O + predictor, family = binomial(link = "log"))
2: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart

Selection:

which is very similar to dump.frames. However, we can examine the state of the program directly,
without dumping and re-loading the dump. As its help page says, recover can be routinely used
as the error action in place of dump.calls and dump.frames, since it behaves like dump.frames
in non-interactive use.

Post-mortem debugging is good for finding out exactly what went wrong, but not necessarily
why. An alternative approach is to take a closer look at what was happening just before the error,
and a good way to do that is to use debug. This inserts a call to the browser at the beginning of
the function, starting in step-through mode. So in our example we could use

> debug(glm.fit)

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

debugging in: glm.fit(x = X, y = Y, weights = weights, start = start, etastart = etastart,
mustart = mustart, offset = offset, family = family, control = control,

Chapter 4: Debugging 112

intercept = attr(mt, "intercept") > 0)
debug: {
lists the whole function
Browse[1]>
debug: x <- as.matrix(x)

Browse[1]> start

[1] -2.235357e-06

debug: eta <- drop(x %*% start)
Browse[1]> eta

1 2 3 4 5
0.000000e+00 -2.235357e-06 -1.117679e-05 -5.588393e-05 -2.794197e-04
6 7 8 9

-1.397098e-03 -6.985492e-03 -3.492746e-02 -1.746373e-01
Browse[1]>

debug: mu <- linkinv(eta <- eta + offset)

Browse[1]> mu

1 2 3 4 5 6 7 8
1.0000000 0.9999978 0.9999888 0.9999441 0.9997206 0.9986039 0.9930389 0.9656755
9
0.8397616

(The prompt Browse[1]> indicates that this is the first level of browsing: it is possible to step
into another function that is itself being debugged or contains a call to browser().)

debug can be used for hidden functions and S3 methods by e.g.
debug(stats:::predict.Arima). (It cannot be used for S4 methods, but an alter-
native is given on the help page for debug.) Sometimes you want to debug a function defined
inside another function, e.g. the function arimafn defined inside arima. To do so, set debug on
the outer function (here arima) and step through it until the inner function has been defined.
Then call debug on the inner function (and use c to get out of step-through mode in the outer
function).

To remove debugging of a function, call undebug with the argument previously given to debug;
debugging otherwise lasts for the rest of the R session (or until the function is edited or otherwise
replaced).

trace can be used to temporarily insert debugging code into a function, for example to insert
a call to browser () just before the point of the error. To return to our running example

first get a numbered listing of the expressions of the function

> page(as.list(body(glm.fit)), method="print")

> trace(glm.fit, browser, at=22)

Tracing function "glm.fit" in package "stats"

[1] "glm.fit"

> glm(resp ~ 0 + predictor, family = binomial(link ="log"))

Tracing glm.fit(x = X, y = Y, weights = weights, start = start,
etastart = etastart, step 22

Called from: eval(expr, envir, enclos)

Browse[1]> n

and single-step from here.

> untrace(glm.fit)

For your own functions, it may be as easy to use £ix to insert temporary code, but trace can help
with functions in a namespace (as can fixInNamespace). Alternatively, use trace(,edit=TRUE)
to insert code visually.

4.3 Checking memory access

Errors in memory allocation and reading/writing outside arrays are very common causes of
crashes (e.g., segfaults) on some machines. Often the crash appears long after the invalid memory

Chapter 4: Debugging 113

access: in particular damage to the structures which R itself has allocated may only become
apparent at the next garbage collection (or even at later garbage collections after objects have
been deleted).

Note that memory access errors may be seen with LAPACK, BLAS, OpenMP and Java-using
packages: some at least of these seem to be intentional, and some are related to passing characters
to Fortran.

Some of these tools can detect mismatched allocation and deallocation. C++ programmers
should note that memory allocated by new [] must be freed by delete [], other uses of new by
delete, and memory allocated by malloc, calloc and realloc by free. Some platforms will
tolerate mismatches (perhaps with memory leaks) but others will segfault.

4.3.1 Using gctorture

We can help to detect memory problems in R objects earlier by running garbage collection as
often as possible. This is achieved by gctorture (TRUE), which as described on its help page
Provokes garbage collection on (nearly) every memory allocation. Intended to ferret
out memory protection bugs. Also makes R run very slowly, unfortunately.
The reference to ‘memory protection’ is to missing C-level calls to PROTECT /UNPROTECT (see
Section 5.9.1 [Garbage Collection], page 144) which if missing allow R objects to be garbage-
collected when they are still in use. But it can also help with other memory-related errors.

Normally running under gctorture (TRUE) will just produce a crash earlier in the R program,
hopefully close to the actual cause. See the next section for how to decipher such crashes.

It is possible to run all the examples, tests and vignettes covered by R CMD check under
gctorture (TRUE) by using the option --use-gct.

The function gctorture2 provides more refined control over the GC torture process. Its argum-
ents step, wait and inhibit_release are documented on its help page. Environment variables
can also be used at the start of the R session to turn on GC torture: R_GCTORTURE corresponds
to the step argument to gctorture2, R_GCTORTURE_WAIT to wait, and R_GCTORTURE_INHIBIT_
RELEASE to inhibit_release.

If R is configured with —-enable-strict-barrier then a variety of tests for the integrity of
the write barrier are enabled. In addition tests to help detect protect issues are enabled:

e All GCs are full GCs.
e New nodes in small node pages are marked as NEWSXP on creation.

o After a GC all free nodes that are not of type NEWSXP are marked as type FREESXP and their
previous type is recorded.

e Most calls to accessor functions check their SEXP inputs and SEXP outputs and signal an
error if a FREESXP is found. The address of the node and the old type are included in the
error message.

R CMD check --use-gct can be set to use gctorture2(n) rather than gctorture (TRUE) by
setting environment variable _R_CHECK_GCT_N_ to a positive integer value to be used as n.

Used with a debugger and with gctorture or gctorture?2 this mechanism can be helpful in
isolating memory protect problems.

4.3.2 Using Valgrind

If you have access to Linux on a common CPU type or supported versions of FreeBSD or Solaris?
you can use valgrind (https://valgrind.org/, pronounced to rhyme with ‘tinned’) to check
for possible problems. To run some examples under valgrind use something like

R -d valgrind --vanilla < mypkg-Ex.R

2 The macOS support is for long-obsolete versions.

https://valgrind.org/

Chapter 4: Debugging 114

R -d "valgrind --tool=memcheck --leak-check=full" --vanilla < mypkg-Ex.R

where mypkg-Ex.R is a set of examples, e.g. the file created in mypkg.Rcheck by R CMD check.
Occasionally this reports memory reads of ‘uninitialised values’ that are the result of compiler
optimization, so can be worth checking under an unoptimized compile: for maximal information
use a build with debugging symbols. We know there will be some small memory leaks from
readline and R itself — these are memory areas that are in use right up to the end of the
R session. Expect this to run around 20x slower than without valgrind, and in some cases
much slower than that. Several versions of valgrind were not happy with some optimized BLAS
libraries that use CPU-specific instructions so you may need to build a version of R specifically
to use with valgrind.

On platforms where valgrind and its headers® are installed you can build a version of R
with extra instrumentation to help valgrind detect errors in the use of memory allocated from
the R heap. The configure option is ——with-valgrind-instrumentation=level, where level
is 0, 1 or 2. Level 0 is the default and does not add anything. Level 1 will detect some uses* of
uninitialised memory and has little impact on speed (compared to level 0). Level 2 will detect
many other memory-use bugs® but make R much slower when running under valgrind. Using
this in conjunction with gctorture can be even more effective (and even slower).

An example of valgrind output is

==12539== Invalid read of size 4

==12539== at 0x1CDF6CBE: csc_compTr (Mutils.c:273)

==12539== by Ox1CEO7E1E: tsc_transpose (dtCMatrix.c:25)

==12539== by 0x80A67A7: do_dotcall (dotcode.c:858)

==12539== by Ox80CACE2: Rf_eval (eval.c:400)

==12539== by 0x80CB5AF: R_execClosure (eval.c:658)

==12539== by 0x80CB98E: R_execMethod (eval.c:760)

==12539== by O0x1B93DEFA: R_standardGeneric (methods_list_dispatch.c:624)
==12539== by 0x810262E: do_standardGeneric (objects.c:1012)

==125639== by 0x80CAD23: Rf_eval (eval.c:403)

==12539== by 0x80CB2F0: Rf_applyClosure (eval.c:573)

==12539== by 0x80CADCC: Rf_eval (eval.c:414)

==12539== by 0x80CAA03: Rf_eval (eval.c:362)

==12539== Address Ox1COD2EA8 is 280 bytes inside a block of size 1996 alloc’d
==12539== at 0x1B9008D1: malloc (vg_replace_malloc.c:149)

==12539== by 0x80F1B34: GetNewPage (memory.c:610)

==12539== by 0x80F7515: Rf_allocVector (memory.c:1915)

This example is from an instrumented version of R, while tracking down a bug in the Matrix
(https://CRAN.R-project.org/package=Matrix) package in 2006. The first line indicates that
R has tried to read 4 bytes from a memory address that it does not have access to. This is
followed by a C stack trace showing where the error occurred. Next is a description of the
memory that was accessed. It is inside a block allocated by malloc, called from GetNewPage,
that is, in the internal R heap. Since this memory all belongs to R, valgrind would not (and
did not) detect the problem in an uninstrumented build of R. In this example the stack trace was
enough to isolate and fix the bug, which was in tsc_transpose, and in this example running
under gctorture() did not provide any additional information.

valgrind is good at spotting the use of uninitialized values: use option --track-origins=yes
to show where these originated from. What it cannot detect is the misuse of arrays allocated on
the stack: this includes C automatic variables and some® Fortran arrays.

in some distributions packaged separately, for example as valgrind-devel.
Those in some numeric, logical, integer, raw, complex vectors and in memory allocated by R_alloc.
including using the data sections of R vectors after they are freed.

[S

small fixed-size arrays by default in gfortran, for example.

https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix

Chapter 4: Debugging 115

It is possible to run all the examples, tests and vignettes covered by R CMD check under
valgrind by using the option --use-valgrind. If you do this you will need to select the
valgrind options some other way, for example by having a ~/.valgrindrc file containing

-—leak-check=full
--track-origins=yes

or setting the environment variable VALGRIND_OPTS. As from R 4.2.0, -—use-valgrind also uses
valgrind when re-building the vignettes.

This section has described the use of memtest, the default (and most useful) of valgrind’s
tools. There are others described in its documentation: helgrind can be useful for threaded
programs.

4.3.3 Using the Address Sanitizer

AddressSanitizer (‘ASan’) is a tool with similar aims to the memory checker in valgrind. It
is available with suitable builds” of gcc and clang on common Linux and macOS platforms.
See https://clang.llvm.org/docs/UsersManual .html#controlling-code-generation,
https://clang.llvm.org/docs/AddressSanitizer.html and https://github.com/google/
sanitizers.

More thorough checks of C++ code are done if the C++ library has been ‘annotated’: at the
time of writing this applied to std::vector in libc++ for use with clang and gives rise to
‘container-overflow’® reports.

It requires code to have been compiled and linked with -fsanitize=address and compiling
with —fno-omit-frame-pointer will give more legible reports. It has a runtime penalty of 2-3x,
extended compilation times and uses substantially more memory, often 1-2GB, at run time. On
64-bit platforms it reserves (but does not allocate) 16-20TB of virtual memory: restrictive shell
settings can cause problems. It can be helpful to increase the stack size, for example to 40MB.

By comparison with valgrind, ASan can detect misuse of stack and global variables but not
the use of uninitialized memory.

Recent versions return symbolic addresses for the location of the error provided
1lvm-symbolizer? is on the path: if it is available but not on the path or has been renamed!?,
one can use an environment variable, e.g.

ASAN_SYMBOLIZER_PATH=/path/to/llvm-symbolizer

An alternative is to pipe the output through asan_symbolize.py!' and perhaps then (for
compiled C++ code) c++filt. (On macOS, you may need to run dsymutil to get line-number
reports.)

The simplest way to make use of this is to build a version of R with something like

CC="gcc -std=gnu99 -fsanitize=address"
CFLAGS="-fno-omit-frame-pointer -g -02 -Wall -pedantic -mtune=native"

currently on ‘x86_64’/¢ix86’ Linux and FreeBSD, with some support for macOS — see https://developer.
apple.com/documentation/xcode/diagnosing-memory-thread-and-crash-issues-early. (There is a faster
variant, HWASAN, for ‘aarch64’ only.) On some platforms the runtime library, libasan, needs to be installed
separately, and for checking C++ you may also need libubsan.

8 see https://1lvm.org/devmtg/2014-04/PDFs/LightningTalks/EuroLLVM/2020147,20--%20container’,20overflow.
pdf.

part of the LLVM project and distributed in 11vm RPMs and .debs on Linux. It is not currently shipped by
Apple.

10

11

as Ubuntu has been said to do.

installed on some Linux systems as asan_symbolize, and obtainable from https://github.com/
1lvm/1lvm-project/blob/main/compiler-rt/lib/asan/scripts/asan_symbolize.py: it makes use of
llvm-symbolizer if available.

https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
https://clang.llvm.org/docs/AddressSanitizer.html
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://developer.apple.com/documentation/xcode/diagnosing-memory-thread-and-crash-issues-early
https://developer.apple.com/documentation/xcode/diagnosing-memory-thread-and-crash-issues-early
https://llvm.org/devmtg/2014-04/PDFs/LightningTalks/EuroLLVM%202014%20--%20container%20overflow.pdf
https://llvm.org/devmtg/2014-04/PDFs/LightningTalks/EuroLLVM%202014%20--%20container%20overflow.pdf
https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/asan/scripts/asan_symbolize.py
https://github.com/llvm/llvm-project/blob/main/compiler-rt/lib/asan/scripts/asan_symbolize.py

Chapter 4: Debugging 116

which will ensure that the libasan run-time library is compiled into the R executable. However
this check can be enabled on a per-package basis by using a ~/.R/Makevars file like

CC = gcc -std=gnu99 -fsanitize=address -fno-omit-frame-pointer

CXX = g++ -fsanitize=address -fno-omit-frame-pointer

FC = gfortran -fsanitize=address

(Note that -fsanitize=address has to be part of the compiler specification to ensure it is used
for linking. These settings will not be honoured by packages which ignore ~/.R/Makevars.) It
will be necessary to build R with

MAIN_LDFLAGS = -fsanitize=address

to link the runtime libraries into the R executable if it was not specified as part of ‘CC’ when R
was built. (For some builds without OpenMP, -pthread is also required.)

For options available via the environment variable ASAN_OPTIONS see https://github.com/
google/sanitizers/wiki/AddressSanitizerFlags. With gcc additional control is available
via the ——param flag: see its man page.

For more detailed information on an error, R can be run under a debugger with a breakpoint
set before the address sanitizer report is produced: for gdb or 11db you could use

break __asan_report_error
(See https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger.)

More recent versions'? added the flag -fsanitize-address-use-after-scope: see https://
github.com/google/sanitizers/wiki/AddressSanitizerUseAfterScope.

One of the checks done by ASan is that malloc/free and in C++ new/delete and
new[]/delete[] are used consistently (rather than say free being used to deallocate memory
allocated by new[]). This matters on some systems but not all: unfortunately on some of those
where it does not matter, system libraries'® are not consistent. The check can be suppressed by
including ‘alloc_dealloc_mismatch=0" in ASAN_OPTIONS.

ASan also checks system calls and sometimes reports can refer to problems in the system
software and not the package nor R. A couple of reports have been of ‘heap-use-after-free’ errors
in the X11 libraries called from Tcl/Tk.

Apple provide a version of the address sanitizer in recent versions of its C/C++ compiler.
This will probably give messages about ‘malloc: nano zone abandoned’ which are innocuous and
can be suppressed by setting environment variable MallocNanoZone to 0. It can be helpful to
install debug symbols (INSTALL --dsym for the package under test and particularly for reverse
dependencies.

4.3.3.1 Using the Leak Sanitizer

For x86_64 Linux there is a leak sanitizer, ‘LSan’: see https://github.com/google/
sanitizers/wiki/AddressSanitizerLeakSanitizer. This is available on recent versions of
gce and clang, and where available is compiled in as part of ASan.

One way to invoke this from an ASan-enabled build is by the environment variable
ASAN_OPTIONS=’detect_leaks=1’
However, this was made the default as from LLVM clang 3.5 and gcc 5.1.0.

When LSan is enabled, leaks give the process a failure error status (by default 23). For an
R package this means the R process, and as the parser retains some memory to the end of the
process, if R itself was built against ASan all runs will have a failure error status (which may
include running R as part of building R itself).

12 including gce 7.1 and clang 4.0.0: for gcc it is implied by -fsanitize=address.

13 for example, X11/GL libraries on Linux, seen when checking package rgl (https://CRAN.R-project.org/
package=rgl) and some others using it—a workaround is to set environment variable RGL_USE_NULL=true.

https://github.com/google/sanitizers/wiki/AddressSanitizerFlags
https://github.com/google/sanitizers/wiki/AddressSanitizerFlags
https://github.com/google/sanitizers/wiki/AddressSanitizerAndDebugger
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterScope
https://github.com/google/sanitizers/wiki/AddressSanitizerUseAfterScope
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://CRAN.R-project.org/package=rgl
https://CRAN.R-project.org/package=rgl

Chapter 4: Debugging 117

To disable this, allocation-mismatch checking and some strict C++ checking use
setenv ASAN_OPTIONS ’alloc_dealloc_mismatch=0:detect_leaks=0:detect_odr_violation=0’
The leak sanitizer is not part of ASan in the Apple clang implementation.

LSan also has a ‘stand-alone’ mode where it is compiled in using -fsanitize=leak and avoids
the run-time overhead of ASan.

4.3.4 Using the Undefined Behaviour Sanitizer

‘Undefined behaviour’ is where the language standard does not require particular behaviour from
the compiler. Examples include division by zero (where for doubles R requires the ISO/IEC 60559
behaviour but C/C++ do not), use of zero-length arrays, shifts too far for signed types (e.g. int
X, ¥; ¥ = x << 31;), out-of-range coercion, invalid C++ casts and mis-alignment. Not uncommon
examples of out-of-range coercion in R packages are attempts to coerce a NaN or infinity to type
int or NA_INTEGER to an unsigned type such as size_t. Also common is y[x - 1] forgetting
that x might be NA_INTEGER.

‘UBSanitizer’ is a tool for C/C++ source code selected by -fsanitize=undefined in su-
itable builds'* of clang and GCC. Its (main) runtime library is linked into each package’s
DLL, so it is less often needed to be included in MAIN_LDFLAGS. Platforms supported
by clang are listed at https://clang.1llvm.org/docs/UndefinedBehaviorSanitizer.html#
supported-platforms: CRAN uses it for C/C++ with both GCC and clang on ‘x86_64" Linux:
the two toolchains often highlight different things with more reports from clang than GCC.

This sanitizer may be combined with the Address Sanitizer by
-fsanitize=undefined,address (where both are supported, and we have seen
library conflicts for clang 17 and later).

Finer control of what is checked can be achieved by other options.

For clang see https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#
ubsan-checks. The current set is (on a single line):

-fsanitize=alignment,bool,bounds,builtin,enum,float-cast-overflow,
float-divide-by-zero,function,implicit-unsigned-integer-truncation,
implicit-signed-integer-truncation,implicit-integer-sign-change,
integer-divide-by-zero,nonnull-attribute,null,nullability-arg,
nullability-assign,nullability-return,object-size,
pointer-overflow,return,returns—-nonnull-attribute,shift,
signed-integer-overflow,unreachable,unsigned-integer-overflow,
unsigned-shift-base,vla-bound,vptr

(plus the more specific versions array-bounsds, local-bounds, shift-base and
shift-exponent), or use something like

-fsanitize=undefined -fno-sanitize=float-divide-by-zero
where in recent versions -fno-sanitize=float-divide-by-zero is the default.
Options return and vptr apply only to C++: to use vptr its run-time library needs to be
linked into the main R executable by building the latter with something like
MAIN_LD="clang++ -fsanitize=undefined"
Option float-divide-by-zero is undesirable for use with R which allow such divisions as
part of IEC 60559 arithmetic, and in versions of clang since June 2019 it is no longer part of
-fsanitize=undefined.
There are also groups of options implicit-integer-truncation, mplicit-integer-
arithmetic-value-change, implicit-conversion, integer and nullability.

4 On some platforms the runtime library, libubsan, needs to be installed separately. For macOS, see https://
developer.apple.com/documentation/xcode/diagnosing-memory-thread-and-crash-issues-early.

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#supported-platforms
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#supported-platforms
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#ubsan-checks
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html#ubsan-checks
https://developer.apple.com/documentation/xcode/diagnosing-memory-thread-and-crash-issues-early
https://developer.apple.com/documentation/xcode/diagnosing-memory-thread-and-crash-issues-early

Chapter 4: Debugging 118

For GCC see https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html (or
the manual for your version of GCC, installed or via https://gcc.gnu.org/onlinedocs/: look
for ‘Program Instrumentation Options’) for the options supported by GCC: versions 13.x supp-
orted
-fsanitize=alignment,bool,bounds,builtin,enum,integer-divide-by-zero,
nonnull-attribute,null,object-size,pointer-overflow,return,
returns-nonnull-attribute,shift,signed-integer-overflow,
unreachable,vla-bound,vptr

plus the more specific versions shift-base and shift-exponent and non-default options
bounds-strict,float-cast-overflow,float-divide-by-zero

where float-divide-by-zero is not desirable for R uses and bounds-strict is an extension of

bounds.

Other useful flags include

-no-fsanitize-recover
which causes the first report to be fatal (it always is for the unreachable and return suboptions).
For more detailed information on where the runtime error occurs, using

setenv UBSAN_OPTIONS ’print_stacktrace=1’
will include a traceback in the report. Beyond that, R can be run under a debugger with a
breakpoint set before the sanitizer report is produced: for gdb or 11db you could use

break __ubsan_handle_float_cast_overflow

break __ubsan_handle_float_cast_overflow_abort
or similar (there are handlers for each type of undefined behaviour).

There are also the compiler flags -fcatch-undefined-behavior and -ftrapv, said to be
more reliable in clang than gcc.

For more details on the topic see https://blog.regehr.org/archives/213 and https://
blog.1llvm.org/2011/05/what-every-c-programmer-should-know.html (which has 3 parts).

It may or may not be possible to build R itself with -fsanitize=undefined: problems have
in the past been seen with OpenMP-using code with gcc but there has been success with LLVM
clang up to version 16.. However, problems have been seen with LLVM clang 17 and later,
including missing entry points and R builds hanging. What has succeeded is to use UBSAN
just for the package under test (and not in combination with ASAN). To do so, check with an
unaltered R, using a custom Makevars file something like
CC = clang -fsanitize=undefined -fno-sanitize=float-divide-by-zero -fno-omit-frame-poii
CXX = clang++ -fsanitize=undefined -fno-sanitize=float-divide-by-zero -fno-omit-frame-]

UBSAN_DIR = /path/to/LLVM18/1ib/clang/18/1ib/x86_64-unknown-linux-gnu
SAN_LIBS = $(UBSAN_DIR)/libclang_rt.ubsan_standalone.a $(UBSAN_DIR)/libclang_rt.ubsan_:

which links the UBSAN libraries statically into the package-under-test’s DSO. It is also possible
to use the dynamic library via

SAN_LIBS = -L$(UBSAN_DIR) -Wl,-rpath,$(UBSAN_DIR) -lclang_rt.ubsan_standalone

provided UBSAN_DIR is added to the runtime library path (as shown or using LD_LIBRARY_PATH).
N.B.: The details, especially the paths used, have changed several times recently.

Apple provides a version of the undefined behaviour sanitizer in recent versions of its C/C++
compiler. R was built with Apple clang 16 with config.site containing

CC="clang -fsanitize=address,undefined"
CXX="clang++ -fsanitize=address,undefined"

and passed its checks.

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/
https://blog.regehr.org/archives/213
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html
https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

Chapter 4: Debugging 119

4.3.5 Other analyses with ‘clang’

Recent versions of LLVM clang on Linux have ‘ThreadSanitizer’ (https://github.com/
google/sanitizers/wiki#threadsanitizer), a ‘data race detector for C/C++ programs’,
and ‘MemorySanitizer’ (https://clang.llvm.org/docs/MemorySanitizer.html, https://
github.com/google/sanitizers) for the detection of uninitialized memory. Both are based on
and provide similar functionality to tools in valgrind. The ThreadSanitizer is also available for
Apple clang on macOS.

clang has a ‘Static Analyzer’ which can be run on the source files during compilation: see
https://clang-analyzer.llvm.org/.

4.3.6 Other analyses with ‘gcc’

GCC 10 introduced a new flag -fanalyzer which does static analysis during compilation,
currently for C code. It is regarded as experimental and it may slow down computation
considerably when problems are found (and use many GB of resident memory). There is some
overlap with problems detected by the Undefined Behaviour sanitizer, but some issues are only
reported by this tool and as it is a static analysis, it does not rely on code paths being exercised.

See https://gcc.gnu.org/onlinedocs/gecc-10.1.0/gcc/Static-Analyzer-Options.
html (or the documentation for your version of gcc if later) and https://developers.redhat.
com/blog/2020/03/26/static-analysis-in-gcc-10

4.3.7 Using ‘Dr. Memory’

‘Dr. Memory’ from https://drmemory.org/ is a memory checker for (currently) Windows,
Linux and macOS with similar aims to valgrind. It works with unmodified executables'® and
detects memory access errors, uninitialized reads and memory leaks.

4.3.8 Fortran array bounds checking

Most of the Fortran compilers used with R allow code to be compiled with checking of array
bounds: for example gfortran has option ~fbounds-check. This will give an error when the
upper or lower bound is exceeded, e.g.

At line 97 of file .../src/appl/dqrdc2.f
Fortran runtime error: Index ’1’ of dimension 1 of array ’x’ above upper bound of O

One does need to be aware that lazy programmers often specify Fortran dimensions as 1
rather than * or a real bound and these will be reported (as may * dimensions)

It is easy to arrange to use this check on just the code in your package: add to ~/.R/Makevars
something like (for gfortran)

FFLAGS = -g -02 -mtune=native -fbounds-check
when you run R CMD check.

This may report errors with the way that Fortran character variables are passed, particularly
when Fortran subroutines are called from C code and character lengths are not passed (see
Section 6.6.1 [Fortran character strings|, page 178).

4.4 Debugging compiled code

Sooner or later programmers will be faced with the need to debug compiled code loaded into R.
This section is geared to platforms using gdb with code compiled by gcc, but similar things are
possible with other debuggers such as 11db (https://11db.1lvm.org/, used on macOS) and
Sun’s dbx: some debuggers have graphical front-ends available.

15 but works better if inlining and frame pointer optimizations are disabled.

https://github.com/google/sanitizers/wiki#threadsanitizer
https://github.com/google/sanitizers/wiki#threadsanitizer
https://clang.llvm.org/docs/MemorySanitizer.html
https://github.com/google/sanitizers
https://github.com/google/sanitizers
https://clang-analyzer.llvm.org/
https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
https://gcc.gnu.org/onlinedocs/gcc-10.1.0/gcc/Static-Analyzer-Options.html
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://developers.redhat.com/blog/2020/03/26/static-analysis-in-gcc-10
https://drmemory.org/
https://lldb.llvm.org/

Chapter 4: Debugging 120

Consider first ‘crashes’, that is when R terminated unexpectedly with an illegal memory
access (a ‘segfault’ or ‘bus error’), illegal instruction or similar. Unix-alike versions of R use a
signal handler which aims to give some basic information. For example

*kkx caught segfault *xx*x*
address 0x20000028, cause ’memory not mapped’

Traceback:

1: .identC(classi[[1]], class2)

2: possibleExtends(class(sloti), classi, ClassDef2 = getClassDef(classi,
where = where))

3: validObject(t(cu))

4: stopifnot(validObject(cu <- as(tu, "dtCMatrix")), validObject(t(cu)),
validObject (t(tu)))

Possible actions:

1: abort (with core dump)

2: normal R exit

3: exit R without saving workspace
4: exit R saving workspace
Selection: 3

Since the R process may be damaged, the only really safe options are the first or third. (Note
that a core dump is only produced where enabled: a common default in a shell is to limit its size
to 0, thereby disabling it.)

A fairly common cause of such crashes is a package which uses .C or .Fortran and writes
beyond (at either end) one of the arguments it is passed. There is a good way to detect this:
using options(CBoundsCheck = TRUE) (which can be selected via the environment variable R_
C_BOUNDS_CHECK=yes) changes the way .C and .Fortran work to check if the compiled code
writes in the 64 bytes at either end of an argument.

Another cause of a ‘crash’ is to overrun the C stack. R tries to track that in its own code, but
it may happen in third-party compiled code. For modern POSIX-compliant OSes R can safely
catch that and return to the top-level prompt, so one gets something like

> .C("aaa")
Error: segfault from C stack overflow
>

However, C stack overflows are fatal under Windows and normally defeat attempts at debugging
on that platform. Further, the size of the stack is set when R is compiled on Windows, whereas
on POSIX OSes it can be set in the shell from which R is launched.

If you have a crash which gives a core dump you can use something like
gdb /path/to/R/bin/exec/R core.12345

to examine the core dump. If core dumps are disabled or to catch errors that do not generate a
dump one can run R directly under a debugger by for example

$ R -d gdb --vanilla
gdb> run
at which point R will run normally, and hopefully the debugger will catch the error and return

to its prompt. This can also be used to catch infinite loops or interrupt very long-running code.
For a simple example

> for(i in 1:1e7) x <- rnorm(100)
[hit Ctrl-C]

Chapter 4: Debugging 121

Program received signal SIGINT, Interrupt.
0x00397682 in _int_free () from /1ib/tls/libc.so.6
(gdb) where
#0 0x00397682 in _int_free () from /1ib/tls/libc.so.6
#1 0x00397eba in free () from /1ib/tls/libc.so.6
#2 Oxb7cf2551 in R_gc_internal (size_needed=313)
at /users/ripley/R/svn/R-devel/src/main/memory.c:743
#3 O0xb7cf3617 in Rf_allocVector (type=13, length=626)
at /users/ripley/R/svn/R-devel/src/main/memory.c:1906
#4 0xb7c3f6d3 in PutRNGstate ()
at /users/ripley/R/svn/R-devel/src/main/RNG.c:351
#5 O0xb7d6cOab in do_random2 (call=0x94bf7d4, op=0x92580e8, args=0x9698f98,
rho=0x9698£28) at /users/ripley/R/svn/R-devel/src/main/random.c:183

In many cases it is possible to attach a debugger to a running process: this is helpful if an
alternative front-end is in use or to investigate a task that seems to be taking far too long. This
is done by something like

gdb -p pid
where pid is the id of the R executable or front-end process and can be found from within a

running R process by calling Sys.getpid() or from a process monitor. This stops the process
so its state can be examined: use continue to resume execution.

Some “tricks” worth knowing follow:

4.4.1 Finding entry points in dynamically loaded code

Under most compilation environments, compiled code dynamically loaded into R cannot have
breakpoints set within it until it is loaded. To use a symbolic debugger on such dynamically
loaded code under Unix-alikes use

e Call the debugger on the R executable, for example by R -d gdb.

e Start R.

e At the R prompt, use dyn.load or library to load your shared object.

e Send an interrupt signal. This will put you back to the debugger prompt.

Set the breakpoints in your code.

Continue execution of R by typing signal 0 and hitting return (RET).

Under Windows signals may not be able to be used, and if so the procedure is more complicated.
See the rw-FAQ.

4.4.2 Inspecting R objects when debugging

The key to inspecting R objects from compiled code is the function Rf _PrintValue (SEXP s)
which uses the normal R printing mechanisms to print the R object pointed to by s, or R_PV (SEXP
s) which will only print ‘objects’.

One way to make use of Rf _PrintValue is to insert suitable calls into the code to be debugged.
Another way is to call R_PV from the symbolic debugger. For example, from gdb we can use
(gdb) p R_PV(ab)

using the object ab from the convolution example, if we have placed a suitable breakpoint in the
convolution C code.

To examine an arbitrary R object we need to work a little harder. For example, let
R> DF <- data.frame(a = 1:3, b = 4:6)

Chapter 4: Debugging 122

By setting a breakpoint at do_get and typing get ("DF") at the R prompt, one can find out the
address in memory of DF, for example

Value returned is $1 = (SEXPREC *) 0x40583elc

(gdb) p *$1

$2 = {

sxpinfo = {type = 19, obj = 1, named = 1, gp = O,

}

mark = 0, debug = 0, trace = 0, = 0},

attrib = 0x40583e80,

u

}

= A
vecsxp = {

length = 2,

type = {c = 0x40634700 "0>X@D>X@0>XQ@", i = 0x40634700,

f = 0x40634700, z = 0x40634700, s = 0x40634700%},

truelength = 1075851272,
1,
primsxp = {offset = 2},
symsxp = {pname = 0x2, value = 0x40634700, internal = 0x40203008},
listsxp = {carval = 0x2, cdrval = 0x40634700, tagval = 0x40203008},
envsxp = {frame = 0x2, enclos = 0x40634700%},
closxp = {formals = 0x2, body = 0x40634700, env = 0x40203008},
promsxp = {value = 0x2, expr = 0x40634700, env = 0x40203008%}

(Debugger output reformatted for better legibility).

Using R_PV() one can “inspect” the values of the various elements of the SEXP, for example,

(gdb) p R_PV($1->attrib)

$names

[1] IIall llbll
$row.names

[1] ||1|| ll2" ||3ll
$class

[1] "data.frame"
$3 = void

To find out where exactly the corresponding information is stored, one needs to go “deeper”:

(gdb) set $a = $1->attrib

(gdb) p $a->u.listsxp.tagval->u.symsxp.pname->u.vecsxp.type.c

$4 = 0x405d40e8 "names"

(gdb) p $a->u.listsxp.carval->u.vecsxp.type.s[1l]->u.vecsxp.type.c
$5 = 0x40634378 "b"

(gdb) p $1->u.vecsxp.type.s[0]->u.vecsxp.type.il[0]

$6 = 1
(gdb) p $1->u.vecsxp.type.s[1l]->u.vecsxp.type.i[1]
$7 = 5

Another alternative is the R_inspect function which shows the low-level structure of the
objects recursively (addresses differ from the above as this example is created on another machine):

Chapter 4: Debugging 123

(gdb) p R_inspect($1)
@100954d18 19 VECSXP gOc2 [0BJ,NAM(2),ATT] (len=2, t1=0)
©@100954d50 13 INTSXP gOc2 [NAM(2)] (len=3, t1=0) 1,2,3
©@100954d88 13 INTSXP gOc2 [NAM(2)] (len=3, t1=0) 4,5,6
ATTRIB:
@102a70140 02 LISTSXP gOcO []
TAG: @10083c478 01 SYMSXP gOcO [MARK,NAM(2),gp=0x4000] "names"
©100954dc0 16 STRSXP gOc2 [NAM(2)] (len=2, t1=0)
©@10099df28 09 CHARSXP gOcl [MARK,gp=0x21] "a"
©@10095e518 09 CHARSXP gOcl [MARK,gp=0x21] "b"
TAG: ©100859e60 01 SYMSXP gOcO [MARK,NAM(2),gp=0x4000] "row.names"
©102a6£868 13 INTSXP gOcl [NAM(2)] (len=2, tl=1) -2147483648,-3
TAG: @10083c948 01 SYMSXP gOcO [MARK,gp=0x4000] "class"
010226£838 16 STRSXP gOci [NAM(2)] (len=1, tl=1)
@1008c6d48 09 CHARSXP gOc2 [MARK,gp=0x21,ATT] "data.frame"

In general the representation of each object follows the format:

@<address> <type-nr> <type-name> <gc-info> [<flags>] ...

For a more fine-grained control over the depth of the recursion and the output of vectors
R_inspect3 takes additional two character() parameters: maximum depth and the maximal
number of elements that will be printed for scalar vectors. The defaults in R_inspect are
currently -1 (no limit) and 5 respectively.

4.4.3 Debugging on macOS
To debug code in a package it is easiest to unpack it in a directory and install it with
R CMD INSTALL --dsym pkgname

as macOS does not store debugging symbols in the .so file. (It is not necessary to have R built
with debugging symbols, although compiling the package should be done including -g in CFLAGS
/ CXXFLAGS / FFLAGS / FCFLAGS as appropriate.)

Security measures may prevent running a CRAN binary distribution of R under 11db or
attaching this as a debugger (https://cran.r-project.org/bin/macosx/RMac0SX-FAQ.html#
I-cannot-attach-debugger-to-R), although both were possible on High Sierra and are again
from R 4.2.0. This can also affect locally compiled builds, where attaching to an interactive R
session under Big Sur or Monterey worked in 2022 after giving administrator permission via a
popup-up. (To debug in what Apple deems a non-interactive session, e.g. logged in remotely, see
man DevToolsSecurity.)

Debugging a local build of R on macOS can raise additional hurdles as environment var-
iables such as DYLD_FALLBACK_LIBRARY_PATH are not usually passed through'® the 11db process,
resulting in messages like

R -4 11db
(11db) run
Process 16828 launched: ’/path/to/bin/exec/R’ (x86_64)

dyld: Library not loaded: 1ibR.dylib
Referenced from: /path/to/bin/exec/R

A quick workaround is to symlink the dylibs under R_HOME/1ib to somewhere where they will
be found such as the current working directory. It would be possible to do as the distribution

16 By default as a security measure: see man dyld.

https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html#I-cannot-attach-debugger-to-R
https://cran.r-project.org/bin/macosx/RMacOSX-FAQ.html#I-cannot-attach-debugger-to-R

Chapter 4: Debugging 124

does!'” and use install_name_tool, but that would have to be done for all the dylibs including
those in packages.
It may be simplest to attach the debugger to a running process (see above). Specifically, run
R and when it is at the prompt just before a command that is to be debugged, at a terminal
ps —ef | grep exec/R
identify the PID pid for the next command: it is the second item
11db -p pid
(11db) continue
and then return to the R console.

For non-interactive use, one may need 11db --batch.

4.5 Using Link-time Optimization

Where supported, link time optimization provides a comprehensive way to check the consistency
of calls between Fortran files or between C and Fortran. Use this via R CMD INSTALL --use-LTO
(but that does not apply if there is a src/Makefile file or a Windows analogue).

To set up support on a Unix-alike, see Section “Link-Time Optimization” in R Installation
and Administration. On Linux using GCC without building R with LTO support, it should
suffice to set

LTO_OPT = -flto
LTO_FC_OPT = -flto
AR = gcc-ar

NM = gcc—nm

in a personal (or site) Makevars file: See Section “Customizing package compilation” in R
Installation and Administration for more information.

For Windows, first edit file etc/${R_ARCH}/Makeconf to give LTO_OPT the value -flto or
do so in a personal/site Makevars file; see also file src/gnuwin32/README. compilation in the
sources.

For example:

boot.f:61: warning: type of ’ddot’ does not match original declaration [-Wlto-type-misr
y(j,i)=ddot(p,x(j,1),n,b(1,j,i),1)
crq.f£:1023: note: return value type mismatch

where the package author forgot to declare

double precision ddot
external ddot

in boot.f. That package had its own copy of ddot: to detect misuse of the one in R’s BLAS
library would have needed R configured with --enable-1to=check.
Further examples:
rkpk2.£:77:5: warning: type of ’dstup’ does not match original declaration [-Wlto-type:
*info, wk)
rkpkl.£:2565:5: note: type mismatch in parameter 14
subroutine dstup (s, lds, nobs, nnull, graux, jpvt, y, q, ldqr,

rkpkl.£:2565:5: note: ’dstup’ was previously declared here

where the fourteenth argument dum was missing in the call.

reg.f:78:33: warning: type of ’dqrdc’ does not match original declaration [-Wlto-type-1
call dqrdc (sr, nobs, nobs, nnull, wk, dum, dum, O)

17 See https://svn.r-project.org/R-dev-web/trunk/CRAN/QA/Simon/R-build/fixpathR:
‘@executable_path’ could be used rather than absolute paths.

https://svn.r-project.org/R-dev-web/trunk/CRAN/QA/Simon/R-build/fixpathR

Chapter 4: Debugging 125

dstup.f:20: note: ’dqrdc’ was previously declared here
call dqrdc (s, lds, nobs, nnull, qraux, jpvt, work, 1)
dgrdc is a LINPACK routine from R, jpvt is an integer array and work is a double precision
one so dum cannot match both. (If -—enable-1to=check had been used the comparison would
have been with the definition in R.)

For Fortran files all in the package, most inconsistencies can be detected by concatenating
the Fortran files and compiling the result, sometimes with clearer diagnostics than provided by
LTO. For our last two examples this gives

all.f:2966:72:

*info, workl)

1
Warning: Missing actual argument for argument ’dum’ at (1)
and
all.f:1663:72:
xipvtwk), wk(ikwk), wk(iworkl), wk(iwork2), info)
1

Warning: Type mismatch in argument ’jpvt’ at (1); passed REAL(8) to INTEGER(4)

On a Unix-alike for a package with a src/Makefile file, LTO can be enabled by including
suitable flags in that file, for example

LTO = $(LTO_OPT)
LTO_FC = $(LTO_FC_OPT)

and ensuring these are used for compilation, for example as part of CFLAGS, CXXFLAGS or FCFLAGS.
If R CMD SHLIB is used for compilation, add —-use-LTO to its call.

On Windows for a package with a src/Makefile.ucrt or src/Makefile.win file which
includes ‘"${R_HOME}/etc${R_ARCH}/Makeconf"’, include

LTO = $(LTO_OPT)
or to always use LTO however R was built,
LTO = -flto

126

5 System and foreign language interfaces

Many of the functions described here have entry-point names with a Rf_ prefix: if they are
called from C code (but not C++ code as from R 4.5.0) that prefix can be omitted. Users are
encouraged to use the prefix when writing new C code.

5.1 Operating system access

Access to operating system functions is via the R functions system and system2. The details
will differ by platform (see the on-line help), and about all that can safely be assumed is that
the first argument will be a string command that will be passed for execution (not necessarily
by a shell) and the second argument to system will be internal which if true will collect the
output of the command into an R character vector.

On POSIX-compliant OSes these commands pass a command-line to a shell: Windows is not
POSIX-compliant and there is a separate function shell to do so.

The function system.time is available for timing. Timing on child processes is only available
on Unix-alikes, and may not be reliable there.

5.2 Interface functions .C and .Fortran

These two functions provide an interface to compiled code that has been linked into R, either
at build time or via dyn.load (see Section 5.3 [dyn.load and dyn.unload], page 128). They are
primarily intended for compiled C and Fortran code respectively, but the .C function can be
used with other languages which can generate C interfaces, for example C++ (see Section 5.6
[Interfacing C++ code], page 138).

The first argument to each function is a character string specifying the symbol name as
known'! to C or Fortran, that is the function or subroutine name. (That the symbol is loaded can
be tested by, for example, is.loaded("cg"). Use the name you pass to .C or .Fortran rather
than the translated symbol name.)

There can be up to 65 further arguments giving R objects to be passed to compiled code.
Normally these are copied before being passed in, and copied again to an R list object when
the compiled code returns. If the arguments are given names, these are used as names for the
components in the returned list object (but not passed to the compiled code).

The following table gives the mapping between the modes of R atomic vectors and the types
of arguments to a C function or Fortran subroutine.

R storage mode C type Fortran type
logical int * INTEGER

integer int * INTEGER

double double * DOUBLE PRECISION
complex Rcomplex * DOUBLE COMPLEX
character char *x* CHARACTER (255)
raw unsigned char * none

On all R platforms int and INTEGER are 32-bit. Code ported from S-PLUS (which uses long *
for logical and integer) will not work on all 64-bit platforms (although it may appear to work
on some, including ‘x86_64" Windows). Note also that if your compiled code is a mixture of C
functions and Fortran subprograms the argument types must match as given in the table above.

C type Rcomplex is a structure with double members r and i defined in the header file
R_ext/Complex.h.? (On most platforms this is stored in a way compatible with the C99 double

1 possibly after some platform-specific translation, e.g. adding leading or trailing underscores.

2 This is currently included by R.h but may not be in future, so it should be included by code needing the type.

Chapter 5: System and foreign language interfaces 127

complex type: however, it may not be possible to pass Rcomplex to a C99 function expecting a
double complex argument. Nor need it be compatible with a C++ complex type. Moreover, the
compatibility can depend on the optimization level set for the compiler.)

Only a single character string of fixed length can be passed to or from Fortran (the length
is not passed), and the success of this is compiler-dependent: its use was formally deprecated
in 2019. Other R objects can be passed to .C, but it is much better to use one of the other
interfaces.

It is possible to pass numeric vectors of storage mode double to C as float * or to Fortran as
REAL by setting the attribute Csingle, most conveniently by using the R functions as.single,
single or mode. This is intended only to be used to aid interfacing existing C or Fortran code.

Logical values are sent as 0 (FALSE), 1 (TRUE) or INT_MIN = -2147483648 (NA, but only if
NAOK is true), and the compiled code should return one of these three values. (Non-zero values
other than INT_MIN are mapped to TRUE.) Note that the use of int * for Fortran logical is not
guaranteed to be portable (although people have gotten away with it for many years): it is better
to pass integers and convert to/from Fortran logical in a Fortran wrapper.

Unless formal argument NAOK is true, all the other arguments are checked for missing values
NA and for the IEEE special values NaN, Inf and -Inf, and the presence of any of these generates
an error. If it is true, these values are passed unchecked.

Argument PACKAGE confines the search for the symbol name to a specific shared object (or
use "base" for code compiled into R). Its use is highly desirable, as there is no way to avoid two
package writers using the same symbol name, and such name clashes are normally sufficient to
cause R to crash. (If it is not present and the call is from the body of a function defined in a
package namespace, the shared object loaded by the first (if any) useDynLib directive will be
used.)

Note that the compiled code should not return anything except through its arguments: C
functions should be of type void and Fortran subprograms should be subroutines.

To fix ideas, let us consider a very simple example which convolves two finite sequences. (This
is hard to do fast in interpreted R code, but easy in C code.) We could do this using .C by

void convolve(double *a, int *na, double *b, int *nb, double *ab)

{
int nab = *na + *nb - 1;
for(int i = 0; i < nab; i++)
ab[i] = 0.0;
for(int i = 0; i < *na; i++)
for(int j = 0; j < *nb; j++)
abli + jl += alil * b[jl;
}

called from R by
conv <- function(a, b)
.C("convolve",
as.double(a),
as.integer(length(a)),
as.double(b),
as.integer(length(b)),
ab = double(length(a) + length(b) - 1))$ab
Note that we take care to coerce all the arguments to the correct R storage mode before
calling .C; mistakes in matching the types can lead to wrong results or hard-to-catch errors.

Special care is needed in handling character vector arguments in C (or C++). On entry the
contents of the elements are duplicated and assigned to the elements of a char ** array, and on

Chapter 5: System and foreign language interfaces 128

exit the elements of the C array are copied to create new elements of a character vector. This
means that the contents of the character strings of the char ** array can be changed, including
to \0 to shorten the string, but the strings cannot be lengthened. It is possible® to allocate a
new string via R_alloc and replace an entry in the char ** array by the new string. However,
when character vectors are used other than in a read-only way, the .Call interface is much to be
preferred.

Passing character strings to Fortran code needs even more care, is deprecated and should
be avoided where possible. Only the first element of the character vector is passed in, as a
fixed-length (255) character array. Up to 255 characters are passed back to a length-one character
vector. How well this works (or even if it works at all) depends on the C and Fortran compilers
on each platform (including on their options). Often what is being passed to Fortran is one of
a small set of possible values (a factor in R terms) which could alternatively be passed as an
integer code: similarly Fortran code that wants to generate diagnostic messages could pass an
integer code to a C or R wrapper which would convert it to a character string.

It is possible to pass some R objects other than atomic vectors via .C, but this is only
supported for historical compatibility: use the .Call or .External interfaces for such objects.
Any C/C++ code that includes Rinternals.h should be called via .Call or .External.

.Fortran is primarily intended for Fortran 77 code, and long precedes any support for ‘modern’
Fortran. Nowadays implementations of Fortran support the Fortran 2003 module iso_c_binding,
a better way to interface modern Fortran code to R is to use .C and write a C interface using
use iso_c_binding.

5.3 dyn.load and dyn.unload

Compiled code to be used with R is loaded as a shared object (Unix-alikes including macOS, see
Section 5.5 [Creating shared objects|, page 137, for more information) or DLL (Windows).

The shared object/DLL is loaded by dyn.load and unloaded by dyn.unload. Unloading is
not normally necessary and is not safe in general, but it is needed to allow the DLL to be re-built
on some platforms, including Windows. Unloading a DLL and then re-loading a DLL of the
same name may not work: Solaris used the first version loaded. A DLL that registers C finalizers,
but fails to unregister them when unloaded, may cause R to crash after unloading.

The first argument to both functions is a character string giving the path to the object.
Programmers should not assume a specific file extension for the object/DLL (such as .so) but
use a construction like

file.path(pathl, path2, paste0O("mylib", .Platform$dynlib.ext))

for platform independence. On Unix-alike systems the path supplied to dyn.load can be an
absolute path, one relative to the current directory or, if it starts with ‘’, relative to the user’s
home directory.

Loading is most often done automatically based on the useDynLib() declaration in the
NAMESPACE file, but may be done explicitly via a call to library.dynam. This has the form

library.dynam("libname", package, 1lib.loc)

where libname is the object/DLL name with the extension omitted. Note that the first argument,
chname, should not be package since this will not work if the package is installed under another
name.

Under some Unix-alike systems there is a choice of how the symbols are resolved when
the object is loaded, governed by the arguments local and now. Only use these if really
necessary: in particular using now=FALSE and then calling an unresolved symbol will terminate
R unceremoniously.

3 Note that this is then not checked for over-runs by option CBoundsCheck = TRUE.

Chapter 5: System and foreign language interfaces 129

R provides a way of executing some code automatically when a object/DLL is either loaded
or unloaded. This can be used, for example, to register native routines with R’s dynamic symbol
mechanism, initialize some data in the native code, or initialize a third party library. On loading
a DLL, R will look for a routine within that DLL named R_init_1ib where lib is the name of
the DLL file with the extension removed. For example, in the command

library.dynam("mylib", package, lib.loc)

R looks for the symbol named R_init_mylib. Similarly, when unloading the object, R looks for
a routine named R_unload_1ib, e.g., R_unload_mylib. In either case, if the routine is present,
R will invoke it and pass it a single argument describing the DLL. This is a value of type D11Info
which is defined in the Rdynload.h file in the R_ext directory.

Note that there are some implicit restrictions on this mechanism as the basename of the DLL
needs to be both a valid file name and valid as part of a C entry point (e.g. it cannot contain
¢.7): for portable code it is best to confine DLL names to be ASCII alphanumeric plus underscore.
If entry point R_init_1ib is not found it is also looked for with ‘.’ replaced by ‘_’.

The following example shows templates for the initialization and unload routines for the
mylib DLL.

-
#include <R_ext/Rdynload.h>
void
R_init_mylib(D1lInfo *info)
{
/* Register routines,
allocate resources. */
}
void
R_unload_mylib(D11lInfo *info)
{
/* Release resources. */
}
k J

If a shared object/DLL is loaded more than once the most recent version is used.? More
generally, if the same symbol name appears in several shared objects, the most recently loaded
occurrence is used. The PACKAGE argument and registration (see the next section) provide good
ways to avoid any ambiguity in which occurrence is meant.

On Unix-alikes the paths used to resolve dynamically-linked dependent libraries are fixed (for
security reasons) when the process is launched, so dyn.load will only look for such libraries in
the locations set by the R shell script (via etc/ldpaths) and in the OS-specific defaults.

Windows allows more control (and less security) over where dependent DLLs are looked for.
On all versions this includes the PATH environment variable, but with lowest priority: note that it
does not include the directory from which the DLL was loaded. It is possible to add a single path
with quite high priority via the DLLpath argument to dyn.load. This is (by default) used by
library.dynam to include the package’s 1ibs/x64 directory (on Intel) in the DLL search path.

5.4 Registering native routines

By ‘native’ routine, we mean an entry point in compiled code.

4 Strictly this is OS-specific, but no exceptions have been seen for many years.

Chapter 5: System and foreign language interfaces 130

In calls to .C, .Call, .Fortran and .External, R must locate the specified native routine by
looking in the appropriate shared object/DLL. By default, R uses the operating-system-specific
dynamic loader to lookup the symbol in all® loaded DLLs and the R executable or libraries it is
linked to. Alternatively, the author of the DLL can explicitly register routines with R and use a
single, platform-independent mechanism for finding the routines in the DLL. One can use this
registration mechanism to provide additional information about a routine, including the number
and type of the arguments, and also make it available to R programmers under a different name.

Registering routines has two main advantages: it provides a faster® way to find the address of
the entry point via tables stored in the DLL at compilation time, and it provides a run-time
check that the entry point is called with the right number of arguments and, optionally, the right
argument types.

To register routines with R, one calls the C routine R_registerRoutines. This is typically
done when the DLL is first loaded within the initialization routine R_init_d11 name described in
Section 5.3 [dyn.load and dyn.unload], page 128. R_registerRoutines takes 5 arguments. The
first is the D11Info object passed by R to the initialization routine. This is where R stores the
information about the methods. The remaining 4 arguments are arrays describing the routines
for each of the 4 different interfaces: .C, .Call, .Fortran and .External. Each argument is a
NULL-terminated array of the element types given in the following table:

.C R_CMethodDef
.Call R_CallMethodDef
.Fortran R_FortranMethodDef

.External R_ExternalMethodDef

Currently, the R_ExternalMethodDef type is the same as R_CallMethodDef type and contains
fields for the name of the routine by which it can be accessed in R, a pointer to the actual native
symbol (i.e., the routine itself), and the number of arguments the routine expects to be passed
from R. For example, if we had a routine named myCall defined as

SEXP myCall(SEXP a, SEXP b, SEXP c);
we would describe this as

static const R_CallMethodDef callMethods[] = {
{"myCall", (DL_FUNC) &myCall, 3},
{NULL, NULL, O}
s
along with any other routines for the .Call interface. For routines with a variable number of
arguments invoked wvia the .External interface, one specifies -1 for the number of arguments
which tells R not to check the actual number passed.

Routines for use with the .C and .Fortran interfaces are described with similar data structures,
which have one optional additional field for describing the type of each argument. If specified, this
field should be an array with the SEXP types describing the expected type of each argument of the
routine. (Technically, the elements of the types array are of type R_NativePrimitiveArgType
which is just an unsigned integer.) The R types and corresponding type identifiers are provided
in the following table:

numeric REALSXP
integer INTSXP
logical LGLSXP
single SINGLESXP

® For calls from within a namespace the search is confined to the DLL loaded for that package.

5 For unregistered entry points the OS’s dlsym routine is used to find addresses. Its performance varies consid-
erably by OS and even in the best case it will need to search a much larger symbol table than, say, the table
of .Call entry points.

Chapter 5: System and foreign language interfaces 131

character STRSXP
list VECSXP

Consider a C routine, myC, declared as
void myC(double *x, int *n, char **names, int *status);
We would register it as
static R_NativePrimitiveArgType myC_typel]l = {
REALSXP, INTSXP, STRSXP, LGLSXP
s

static const R_CMethodDef cMethods[] = {
{"myC", (DL_FUNC) &myC, 4, myC_type},
{NULL, NULL, O, NULL}
};
If registering types, check carefully that the number of types matches the number of arguments:
as the type array (here myC_type) is passed as a pointer in C, the registration mechanism cannot
check this for you.

Note that .Fortran entry points are mapped to lowercase, so registration should use lowercase
only.

Having created the arrays describing each routine, the last step is to actually register them
with R. We do this by calling R_registerRoutines. For example, if we have the descriptions
above for the routines accessed by the .C and .Call we would use the following code:

void
R_init_myLib(D11lInfo *info)
{
R_registerRoutines(info, cMethods, callMethods, NULL, NULL);
}

This routine will be invoked when R loads the shared object/DLL named myLib. The last
two arguments in the call to R_registerRoutines are for the routines accessed by .Fortran
and .External interfaces. In our example, these are given as NULL since we have no routines of
these types.

When R unloads a shared object/DLL, its registrations are removed. There is no other facility
for unregistering a symbol.

Examples of registering routines can be found in the different packages in the R source tree
(e.g., stats and graphics). Also, there is a brief, high-level introduction in R News (volume 1/3,
September 2001, pages 2023, https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf).

Once routines are registered, they can be referred to as R objects if this is arranged in the
useDynLib call in the package’s NAMESPACE file (see Section 1.5.4 [useDynLib|, page 51). So for
example the stats package has

Refer to all C/Fortran routines by their name prefixed by C_
useDynLib(stats, .registration = TRUE, .fixes = "C_")

in its NAMESPACE file, and then ansari.test’s default methods can contain

pansari <- function(q, m, n)
.C(C_pansari, as.integer(length(q)), p = as.double(q),
as.integer(m), as.integer(n))$p

This avoids the overhead of looking up an entry point each time it is used, and ensures that the
entry point in the package is the one used (without a PACKAGE = "pkg" argument).

R_init_ routines are often of the form
void attribute_visible R_init_mypkg(DllInfo *d11)

https://www.r-project.org/doc/Rnews/Rnews_2001-3.pdf

Chapter 5: System and foreign language interfaces 132

{
R_registerRoutines(dll, CEntries, CallEntries, FortEntries,
ExternalEntries);
R_useDynamicSymbols(dll, FALSE);
R_forceSymbols(dll, TRUE);
}

The R_useDynamicSymbols call says the DLL is not to be searched for entry points specified
by character strings so .C etc calls will only find registered symbols: the R_forceSymbols call
only allows .C etc calls which specify entry points by R objects such as C_pansari (and not by
character strings). Each provides some protection against accidentally finding your entry points
when people supply a character string without a package, and avoids slowing down such searches.
(For the visibility attribute see Section 6.18 [Controlling visibility], page 194.)
In more detail, if a package mypkg contains entry points reg and unreg and the first is

registered as a 0-argument .Call routine, we could use (from code in the package)

.Call("reg")

.Call("unreg")
Without or with registration, these will both work. If R_init_mypkg calls R_
useDynamicSymbols(dll, FALSE), only the first will work. If in addition to registration the
NAMESPACE file contains

useDynLib(mypkg, .registration = TRUE, .fixes = "C_")
then we can call .Call(C_reg). Finally, if R_init_mypkg also calls R_forceSymbols(dll,
TRUE), only .Call(C_reg) will work (and not .Call("reg")). This is usually what we want:
it ensures that all of our own .Call calls go directly to the intended code in our package and
that no one else accidentally finds our entry points. (Should someone need to call our code from
outside the package, for example for debugging, they can use .Call(mypkg:::C_reg).)

5.4.1 Speed considerations

Sometimes registering native routines or using a PACKAGE argument can make a large difference.
The results can depend quite markedly on the OS (and even if it is 32- or 64-bit), on the version
of R and what else is loaded into R at the time.
To fix ideas, first consider x86_64 OS 10.7 and R 2.15.2. A simple .Call function might be
foo <- function(x) .Call("foo", x)
with C code

#include <Rinternals.h>

SEXP foo (SEXP x)
{

return x;
}

If we compile with by R CMD SHLIB foo.c, load the code by dyn.load("foo.so") and run
foo(pi) it took around 22 microseconds (us). Specifying the DLL by

foo2 <- function(x) .Call("foo", x, PACKAGE = "foo")
reduced the time to 1.7 us.

Now consider making these functions part of a package whose NAMESPACE file uses
useDynlib(foo). This immediately reduces the running time as "foo" will be preferentially
looked for foo.d11l. Without specifying PACKAGE it took about 5 us (it needs to fathom out the
appropriate DLL each time it is invoked but it does not need to search all DLLs), and with the
PACKAGE argument it is again about 1.7 us.

Chapter 5: System and foreign language interfaces 133

Next suppose the package has registered the native routine foo. Then foo() still has to find
the appropriate DLL but can get to the entry point in the DLL faster, in about 4.2 us. And
foo2() now takes about 1 us. If we register the symbols in the NAMESPACE file and use

foo3 <- function(x) .Call(C_foo, x)

then the address for the native routine is looked up just once when the package is loaded, and
foo3(pi) takes about 0.8 us.

Versions using .C() rather than .Call() took about 0.2 us longer.

These are all quite small differences, but C routines are not uncommonly invoked millions
of times for run times of a few microseconds each, and those doing such things may wish to be
aware of the differences.

On Linux and Solaris there is a smaller overhead in looking up symbols.

Symbol lookup on Windows used to be far slower, so R maintains a small cache. If the cache
is currently empty enough that the symbol can be stored in the cache then the performance
is similar to Linux and Solaris: if not it may be slower. R’s own code always uses registered
symbols and so these never contribute to the cache: however many other packages do rely on
symbol lookup.

In more recent versions of R all the standard packages register native symbols and do not
allow symbol search, so in a new session foo() can only look in foo.so and may be as fast as
f002(). This will no longer apply when many contributed packages are loaded, and generally
those last loaded are searched first. For example, consider R 3.3.2 on x86_64 Linux. In an
empty R session, both foo() and foo2() took about 0.75 us; however after packages igraph
(https://CRAN.R-project.org/package=igraph) and spatstat (https://CRAN.R-project.
org/package=spatstat) had been loaded (which loaded another 12 DLLs), foo() took 3.6
us but foo2() still took about 0.80 us. Using registration in a package reduced this to 0.55 us
and foo3() took 0.40 us, times which were unchanged when further packages were loaded.

5.4.2 Example: converting a package to use registration

The splines package was converted to use symbol registration in 2001, but we can use it as an
example” of what needs to be done for a small package.

e Find the relevant entry points. This is somewhat OS-specific, but something like the following
should be possible at the OS command-line

nm -g /path/to/splines.so | grep " T "
0000000000002670 T _spline_basis
0000000000001ecO T _spline_value

This indicates that there are two relevant entry points. (They may or may not have a leading
underscore, as here. Fortran entry points will have a trailing underscore on all current
platforms.) Check in the R code that they are called by the package and how: in this case
they are used by .Call.

Alternatively, examine the package’s R code for all .C, .Fortran, .Call and .External
calls.

e Construct the registration table. First write skeleton registration code, conventionally in file
src/init.c (or at the end of the only C source file in the package: if included in a C++ file
the ‘R_init’ function would need to be declared extern "C"):

7 Because it is a standard package, one would need to rename it before attempting to reproduce the account
here.

https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=igraph
https://CRAN.R-project.org/package=spatstat
https://CRAN.R-project.org/package=spatstat

Chapter 5: System and foreign language interfaces 134

#include <stdlib.h> // for NULL
#include <R_ext/Rdynload.h>

#define CALLDEF(name, n) {#name, (DL_FUNC) &name, n}

static const R_CallMethodDef R_CallDef[] = {
CALLDEF(spline_basis, 7)),
CALLDEF (spline_value, 7),
{NULL, NULL, O}

};
void R_init_splines(D11lInfo *dll)
{
R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);
}

and then replace the ? in the skeleton with the actual numbers of arguments. You will need
to add declarations (also known as ‘prototypes’) of the functions unless appending to the
only C source file. Some packages will already have these in a header file, or you could
create one and include it in init.c, for example splines.h containing

#include <Rinternals.h> // for SEXP
extern SEXP spline_basis(SEXP knots, SEXP order, SEXP xvals, SEXP derivs);
extern SEXP spline_value(SEXP knots, SEXP coeff, SEXP order, SEXP x, SEXP deriv);

Tools are available to extract declarations, at least for C and C++ code: see the help file for
package_native_routine_registration_skeleton in package tools. Here we could have
used

cproto -I/path/to/R/include -e splines.c

For examples of registering other types of calls, see packages graphics and stats. In particular,
when registering entry points for .Fortran one needs declarations as if called from C, such
as

#include <R_ext/RS.h>

void F77_NAME(supsmu) (int *n, double *x, double *y,
double *w, int *iper, double *span, double *alpha,
double *smo, double *sc, double *edf);

gfortran 8.4, 9.2 and later can help generate such prototypes with its flag ~-fc-prototypes-
external (although one will need to replace the hard-coded trailing underscore with the
F77_NAME macro).

One can get away with inaccurate argument lists in the declarations: it is easy to specify
the arguments for .Call (all SEXP) and .External (one SEXP) and as the arguments for .C
and .Fortran are all pointers, specifying them as void * suffices. (For most platforms one
can omit all the arguments, although link-time optimization will warn, as will compilers set
up to warn on strict prototypes — and C23 requires correct arguments.)

Using -fc-prototypes-external will give a prototype using int_least32_t *1gl for For-
tran LOGICAL LGL, but this is not portable and traditionally it has been assumed that the
C/C++ equivalent was int *1gl. If adding a declaration just to register a .Fortran call,
the most portable version is void *1gl.

e (Optional but highly recommended.) Restrict .Call etc to use the symbols you chose to
register by editing src/init.c to contain

Chapter 5: System and foreign language interfaces 135

void R_init_splines(D11lInfo *dl1l)

{
R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);
R_useDynamicSymbols(dll, FALSE);

}

A skeleton for the steps so far can be made using package_native_routine_registration_
skeleton in package tools. This will optionally create declarations based on the usage in the R
code.

The remaining steps are optional but recommended.

e KEdit the NAMESPACE file to create R objects for the registered symbols:
useDynLib(splines, .registration = TRUE, .fixes = "C_")
e Find all the relevant calls in the R code and edit them to use the R objects. This entailed
changing the lines
temp <- .Call("spline_basis", knots, ord, x, derivs, PACKAGE = "splines")
ylaccept] <- .Call("spline_value", knots, coeff, ord, x[accept], deriv, PACKAGE = "splines")
y = .Call("spline_value", knots, coef(object), ord, x, deriv, PACKAGE = "splines")
to

temp <- .Call(C_spline_basis, knots, ord, x, derivs)
ylaccept] <- .Call(C_spline_value, knots, coeff, ord, x[accept], deriv)
y = .Call(C_spline_value, knots, coef(object), ord, x, deriv)

Check that there is no exportPattern directive which unintentionally exports the newly
created R objects.

e Restrict .Call to use the R symbols by editing src/init.c to contain
void R_init_splines(D11lInfo *dll)

{
R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);
R_useDynamicSymbols(dll, FALSE);
R_forceSymbols(dll, TRUE);

}

e Consider visibility. On some OSes we can hide entry points from the loader, which precludes
any possible name clashes and calling them accidentally (usually with incorrect arguments
and crashing the R process). If we repeat the first step we now see

nm -g /path/to/splines.so | grep " T "

0000000000002e00 T _R_init_splines

00000000000025e0 T _spline_basis

0000000000001e20 T _spline_value
If there were any entry points not intended to be used by the package we should try to avoid
exporting them, for example by making them static. Now that the two relevant entry
points are only accessed via the registration table, we can hide them. There are two ways to
do so on some® Unix-alikes. We can hide individual entry points via

#include <R_ext/Visibility.h>

SEXP attribute_hidden
spline_basis(SEXP knots, SEXP order, SEXP xvals, SEXP derivs)

SEXP attribute_hidden
spline_value(SEXP knots, SEXP coeff, SEXP order, SEXP x, SEXP deriv)

8 generally those with an ELF linker and macOS from R 4.5.0.

Chapter 5: System and foreign language interfaces

Alternatively, we can change the default visibility for all C symbols by including

PKG_CFLAGS = $(C_VISIBILITY)

136

in src/Makevars, and then we need to allow registration by declaring R_init_splines to

be visible:
#include <R_ext/Visibility.h>

void attribute_visible
R_init_splines(D11Info *d1l)

See Section 6.18 [Controlling visibility], page 194, for more details, including using Fortran

code and ways to restrict visibility on Windows.

e We end up with a file src/init.c containing

-
#include <stdlib.h>

#include <R_ext/Rdynload.h>

#include <R_ext/Visibility.h> // optional

#include "splines.h"

static const R_CallMethodDef R_CallDef[] = {
CALLDEF (spline_basis, 4),
CALLDEF (spline_value, 5),
{NULL, NULL, O}

};

void

attribute_visible // optional
R_init_splines(D11lInfo *d1l)

{

R_useDynamicSymbols(dll, FALSE);
R_forceSymbols(dll, TRUE);

-

#define CALLDEF(name, n) {#name, (DL_FUNC) &name, n}

R_registerRoutines(dll, NULL, R_CallDef, NULL, NULL);

5.4.3 Linking to native routines in other packages

In addition to registering C routines to be called by R, it can at times be useful for one package
to make some of its C routines available to be called by C code in another package. The interface

consists of two routines declared in header R_ext/Rdynload.h as

void R_RegisterCCallable(const char *package, const char *name,

DL_FUNC fptr);

DL_FUNC R_GetCCallable(const char *package, const char *name);

A package packA that wants to make a C routine myCfun available to C code in other packages

would include the call
R_RegisterCCallable("packA", "myCfun", myCfun);

in its initialization function R_init_packA. A package packB that wants to use this routine

would retrieve the function pointer with a call of the form
p_myCfun = R_GetCCallable("packA", "myCfun");

Chapter 5: System and foreign language interfaces 137

As the type DL_FUNC is only appropriate for functions with no arguments, other users will need
to cast to an appropriate type. For example

typedef SEXP (*na_omit_xts_func) (SEXP x);

na_omit_xts_func fun = (na_omit_xts_func) R_GetCCallable("xts", "na_omit_xts");

return fun(x);

The author of packB is responsible for ensuring that p_myCfun has an appropriate declaration.
In the future R may provide some automated tools to simplify exporting larger numbers of
routines.

A package that wishes to make use of header files in other packages needs to declare them as
a comma-separated list in the field ‘LinkingTo’ in the DESCRIPTION file. This then arranges for
the include directories in the installed linked-to packages to be added to the include paths for
C and C++ code.

It must specify? ‘Imports’ or ‘Depends’ of those packages, for they have to be loaded!'® prior
to this one (so the path to their compiled code has been registered).

CRAN examples of the use of this mechanism include coxme (https://CRAN.R-project.org/
package=coxme) linking to bdsmatrix (https://CRAN.R-project.org/package=bdsmatrix)
and xts (https://CRAN.R-project.org/package=xts) linking to zoo (https://CRAN.
R-project.org/package=z00).

NB: this mechanism is fragile, as changes to the interface provided by packA have to be
recognised by packB. The consequences of not doing so have included serious corruption to the
memory pool of the R session. Either packB has to depend on the exact version of packA or
there needs to be a mechanism for packB to test at runtime the version of packA it is linked to
matches that it was compiled against.

On rare occasions in can be useful for C code in one package to dynamically look up the
address in another package. This can be done using R_FindSymbol:

DL_FUNC R_FindSymbol(char const *name, char const *pkg,
R_RegisteredNativeSymbol *symbol);

5.5 Creating shared objects

Shared objects for loading into R can be created using R CMD SHLIB. This accepts as arguments
a list of files which must be object files (with extension .o) or sources for C, C++, Fortran,
Objective C or Objective C++ (with extensions .c, .cc or .cpp, .f (fixed-form Fortran), .£90 or
.£95 (free-form), .m, and .mm or .M, respectively), or commands to be passed to the linker. See
R CMD SHLIB --help (or the R help for SHLIB) for usage information. Note that files intended
for the Fortran pre-processor with extension .F are not accepted.

If compiling the source files does not work “out of the box”, you can specify additional flags by
setting some of the variables PKG_CPPFLAGS (for the C/C++ preprocessor, mainly ‘-I’, ‘-D’ and
-U ﬂags), PKG_CFLAGS, PKG_CXXFLAGS, PKG_FFLAGS, PKG_OBJCFLAGS, and PKG_0OBJCXXFLAGS
(for the C, C++, Fortran, Objective C, and Objective C++ compilers, respectively) in the file
Makevars in the compilation directory (or, of course, create the object files directly from the
command line). Similarly, variable PKG_LIBS in Makevars can be used for additional ‘-1’ and
‘~L’ flags to be passed to the linker when building the shared object. (Supplying linker commands
as arguments to R CMD SHLIB will take precedence over PKG_LIBS in Makevars.)

It is possible to arrange to include compiled code from other languages by setting the macro
‘OBJECTS’ in file Makevars, together with suitable rules to make the objects.

9 whether or not ‘LinkingTo’ is used.

10" 50 there needs to be a corresponding import or importFrom entry in the NAMESPACE file.

https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=coxme
https://CRAN.R-project.org/package=bdsmatrix
https://CRAN.R-project.org/package=xts
https://CRAN.R-project.org/package=zoo
https://CRAN.R-project.org/package=zoo

Chapter 5: System and foreign language interfaces 138

Flags that are already set (for example in file etcR_ARCH/Makeconf) can be overridden by
the environment variable MAKEFLAGS (at least for systems using a POSIX-compliant make), as in
(Bourne shell syntax)

MAKEFLAGS="CFLAGS=-03" R CMD SHLIB *.c

It is also possible to set such variables in personal Makevars files, which are read after the
local Makevars and the system makefiles or in a site-wide Makevars.site file. See Section
“Customizing package compilation” in R Installation and Administration for more information.

Note that as R CMD SHLIB uses Make, it will not remake a shared object just because the flags
have changed, and if test.c and test.f both exist in the current directory

R CMD SHLIB test.f
will compile test.c!

If the src subdirectory of an add-on package contains source code with one of the extensions
listed above or a file Makevars but not a file Makefile, R CMD INSTALL creates a shared object
(for loading into R through useDynlib in the NAMESPACE, or in the .onLoad function of the
package) using the R CMD SHLIB mechanism. If file Makevars exists it is read first, then the
system makefile and then any personal Makevars files.

If the src subdirectory of package contains a file Makefile, this is used by R CMD INSTALL in
place of the R CMD SHLIB mechanism. make is called with makefiles R_HOME/etcR_ARCH/Makeconf,
src/Makefile and any personal Makevars files (in that order). The first target found in
src/Makefile is used.

It is better to make use of a Makevars file rather than a Makefile: the latter should be
needed only exceptionally.

Under Windows the same commands work, but Makevars.win will be used in preference
to Makevars, and only src/Makefile.win will be used by R CMD INSTALL with src/Makefile
being ignored. Since R 4.2.0, Makevars.ucrt will be used in preference to Makevars.win and
src/Makefile.ucrt will be used in preference to src/Makefile.win. For past experiences of
building DLLs with a variety of compilers, see file ‘README.packages’. Under Windows you
can supply an exports definitions file called d11name-win.def: otherwise all entry points in
objects (but not libraries) supplied to R CMD SHLIB will be exported from the DLL. An example
is stats-win.def for the stats package: a CRAN example in package fastICA (https://CRAN.
R-project.org/package=fastICA).

If you feel tempted to read the source code and subvert these mechanisms, please resist. Far
too much developer time has been wasted in chasing down errors caused by failures to follow
this documentation, and even more by package authors demanding explanations as to why their
packages no longer work. In particular, undocumented environment or make variables are not for
use by package writers and are subject to change without notice.

5.6 Interfacing C++ code

Suppose we have the following hypothetical C++ library, consisting of the two files X.h and X. cpp,
and implementing the two classes X and Y which we want to use in R.

https://CRAN.R-project.org/package=fastICA
https://CRAN.R-project.org/package=fastICA

Chapter 5: System and foreign language interfaces 139

- ~
// X.h
class X {
public: X O; "X O;
+;
class Y {
public: Y O); “Y O;
};
K J
// X.cpp

#include <R.h>
#include "X.h"

static Y y;

X::X(O { REprintf("constructor X\n"); }
X::"X() { REprintf("destructor X\n"); 1}
Y::Y() { REprintf("constructor Y\n"); }
Y::"Y() { REprintf("destructor Y\n"); 1}

-

To use with R, the only thing we have to do is writing a wrapper function and ensuring that
the function is enclosed in

extern "C" {

}
For example,

"
// X_main.cpp:
#include "X.h"
extern "C" {
void X_main () {

X x;

}
} // extern "C"

k

Compiling and linking should be done with the C++ compiler-linker (rather than the C compiler-
linker or the linker itself); otherwise, the C++ initialization code (and hence the constructor of
the static variable Y) are not called. On a properly configured system, one can simply use

R CMD SHLIB X.cpp X_main.cpp

to create the shared object, typically X.so (the file name extension may be different on your
platform). Now starting R yields

Chapter 5: System and foreign language interfaces 140

R version 2.14.1 Patched (2012-01-16 r58124)
Copyright (C) 2012 The R Foundation for Statistical Computing

Type "qOO" to quit R.

R> dyn.load(paste("X", .Platform$dynlib.ext, sep = ""))
constructor Y

R> .C("X_main")

constructor X

destructor X

list ()

R> qO

Save workspace image? [y/n/c]l: y

destructor Y

The R for Windows FAQ (rw-FAQ) contains details of how to compile this example under
Windows.

Earlier versions of this example used C++ iostreams: this is best avoided. There is no guarantee
that the output will appear in the R console, and indeed it will not on the R for Windows
console. Use R code or the C entry points (see Section 6.5 [Printing], page 176) for all I/O if at
all possible. Examples have been seen where merely loading a DLL that contained calls to C++
I/0O upset R’s own C I/O (for example by resetting buffers on open files).

Most R header files can be included within C++ programs but they should not be included
within an extern "C" block (as they include system headers'!).

5.6.1 External C++ code

Quite a lot of external C++ software is header-only (e.g. most of the Boost ‘libraries’ in-
cluding all those supplied by package BH (https://CRAN.R-project.org/package=BH), and
most of Armadillo as supplied by package RecppArmadillo (https://CRAN.R-project.org/
package=RcppArmadillo)) and so is compiled when an R package which uses it is installed. This
causes few problems.

A small number of external libraries used in R packages have a C++ interface to a libr-
ary of compiled code, e.g. packages sf (https://CRAN.R-project.org/package=sf) and rjags
(https://CRAN.R-project.org/package=rjags). This raises many more problems! The C++
interface uses name-mangling and the ABI'?> may depend on the compiler, version and even C++
defines'?, so requires the package C++ code to be compiled in exactly the same way as the library
(and what that was is often undocumented).

Even fewer external libraries use C++ internally but present a C interface, such as GEOS
used by sf (https://CRAN.R-project.org/package=sf) and other packages. These require the
C++ runtime library to be linked into the package’s shared object/DLL, and this is best done by
including a dummy C++ file in the package sources.

There is a trend to link to the C++ interfaces offered by C software such as hdf5, pcre and
ImageMagick. Their C interfaces are much preferred for portability (and can be used from C++
code). Also, the C++ interfaces are often optional in the software build or packaged separately
and so users installing from package sources are less likely to already have them installed.

1 Even including C system headers in such a block has caused compilation errors.
12 https://en.wikipedia.org/wiki/Application_binary_interface.

13 For example, ‘_GLIBCXX_USE_CXX11_ABI’ in g++ 5.1 and later: https://gcc.gnu.org/onlinedocs/libstdc++/
manual/us ing_dual_abi.html.

https://CRAN.R-project.org/package=BH
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=RcppArmadillo
https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=sf
https://en.wikipedia.org/wiki/Application_binary_interface
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html
https://gcc.gnu.org/onlinedocs/libstdc++/manual/using_dual_abi.html

Chapter 5: System and foreign language interfaces 141

5.7 Fortran I/0O

We have already warned against the use of C++ iostreams not least because output is not
guaranteed to appear on the R console, and this warning applies equally to Fortran output to
units * and 6. See Section 6.5.1 [Printing from Fortran]|, page 176, which describes workarounds.

When R was first developed, most Fortran compilers implemented I/O on top of the C
I/O system and so the two interworked successfully. This was true of g77, but no longer of
gfortran as used in gcc 4 and later. In particular, any package that makes use of Fortran I/O
will when compiled on Windows interfere with C I/O: when the Fortran 1/O support code is
initialized (typically when the package is loaded) the C stdout and stderr are switched to LF
line endings. (Function init in file src/modules/lapack/init_win.c shows how to mitigate
this. In a package this would look something like

#ifdef _WIN32
include <fcntl.h>
#endif

void R_init_mypkgname(D11lInfo *d1ll)
{

// Native symbol registration calls

#ifdef _WIN32
// gfortran I/0 initialization sets these to _O0_BINARY
setmode (1, _O_TEXT); /* stdout */
setmode(2, _O_TEXT); /* stderr */

#endif

}

in the file used for native symbol registration.)

5.8 Linking to other packages

It is not in general possible to link a DLL in package packA to a DLL provided by package packB
(for the security reasons mentioned in Section 5.3 [dyn.load and dyn.unload], page 128, and also
because some platforms distinguish between shared objects and dynamic libraries), but it is on
Windows.

Note that there can be tricky versioning issues here, as package packB could be re-installed
after package packA — it is desirable that the API provided by package packB remains backwards-
compatible.

Shipping a static library in package packB for other packages to link to avoids most of the
difficulties.

5.8.1 Unix-alikes

It is possible to link a shared object in package packA to a library provided by package packB
under limited circumstances on a Unix-alike OS. There are severe portability issues, so this is
not recommended for a distributed package.

This is easiest if packB provides a static library packB/1lib/libpackB.a. (Note using directory
1ib rather than libs is conventional, and architecture-specific sub-directories may be needed
and are assumed in the sample code below. The code in the static library will need to be
compiled with PIC flags on platforms where it matters.) Then as the code from package packB is
incorporated when package packA is installed, we only need to find the static library at install
time for package packA. The only issue is to find package packB, and for that we can ask R by
something like (long lines broken for display here)

Chapter 5: System and foreign language interfaces 142

PKGB_PATH=‘echo ’library(packB);
cat(system.file("1lib", package="packB", mustWork=TRUE))’ \
| "${R_HOME}/bin/R" --vanilla --no-echo®
PKG_LIBS="$ (PKGB_PATH) $ (R_ARCH) /libpackB.a"

For a dynamic library packB/lib/libpackB.so (packB/lib/libpackB.dylib on macOS:
note that you cannot link to a shared object, .so, on that platform) we could use

PKGB_PATH=‘echo ’library(packB);
cat(system.file("1lib", package="packB", mustWork=TRUE))’ \
| "${R_HOME}/bin/R" --vanilla --no-echo

PKG_LIBS=-L"$ (PKGB_PATH) $(R_ARCH)" -1lpackB

This will work for installation, but very likely not when package packB is loaded, as the path
to package packB’s 1ib directory is not in the 1d.so'# search path. You can arrange to put it
there before R is launched by setting (on some platforms) LD_RUN_PATH or LD_LIBRARY_PATH or
adding to the 1d.so cache (see man ldconfig). On platforms that support it, the path to the
directory containing the dynamic library can be hardcoded at install time (which assumes that
the location of package packB will not be changed nor the package updated to a changed API).
On systems with the gcc or clang and the GNU linker (e.g. Linux) and some others this can be
done by e.g.
PKGB_PATH=‘echo ’library(packB);
cat(system.file("1lib", package="packB", mustWork=TRUE)))’ \
| "${R_HOME}/bin/R" --vanilla --no-echo
PKG_LIBS=-L"$ (PKGB_PATH)$(R_ARCH)" -W1,-rpath,"$(PKGB_PATH)$(R_ARCH)" -lpackB
Some other systems (e.g. Solaris with its native linker) use -Rdir rather than -rpath,dir (and
this is accepted by the compiler as well as the linker).
It may be possible to figure out what is required semi-automatically from the result of R CMD
libtool --config (look for ‘hardcode’).
Making headers provided by package packB available to the code to be compiled in package
packA can be done by the LinkingTo mechanism (see Section 5.4 [Registering native routines],
page 129).

5.8.2 Windows

Suppose package packA wants to make use of compiled code provided by packB in DLL
packB/libs/exB.d1ll, possibly the package’s DLL packB/libs/packB.d1l. (This can be
extended to linking to more than one package in a similar way.) There are three issues to
be addressed:

e Making headers provided by package packB available to the code to be compiled in package
packA.

This is done by the LinkingTo mechanism (see Section 5.4 [Registering native routines],
page 129).
e preparing packA.dll to link to packB/libs/exB.d11.
This needs an entry in Makevars.win or Makevars.ucrt of the form
PKG_LIBS= -L<something> -lexB
and one possibility is that <something> is the path to the installed pkgB/1ibs directory.
To find that we need to ask R where it is by something like

PKGB_PATH=‘echo ’library(packB);
cat(system.file("libs", package="packB", mustWork=TRUE))’ \
| rterm --vanilla --no-echof

14 4y1d on macOS, and DYLD_LIBRARY_PATHS below.

Chapter 5: System and foreign language interfaces 143

PKG_LIBS= -L"$(PKGB_PATH)$(R_ARCH)" -lexB

Another possibility is to use an import library, shipping with package packA an exports file
exB.def. Then Makevars.win (or Makevars.ucrt) could contain

PKG_LIBS= -L. -lexB
all: $(SHLIB) before

before: libexB.dll.a
libexB.dll.a: exB.def

and then installing package packA will make and use the import library for exB.d11. (One
way to prepare the exports file is to use pexports.exe.)

e loading packA.d11 which depends on exB.d11.
If exB.d11 was used by package packB (because it is in fact packB.d1ll or packB.dll
depends on it) and packB has been loaded before packA, then nothing more needs to be
done as exB.d11 will already be loaded into the R executable. (This is the most common
scenario.)

More generally, we can use the DLLpath argument to library.dynam to ensure that exB.d11
is found, for example by setting

library.dynam("packA", pkg, lib,
DLLpath = system.file("libs", package="packB"))

Note that DLLpath can only set one path, and so for linking to two or more packages you
would need to resort to setting environment variable PATH.

5.9 Handling R objects in C

Using C code to speed up the execution of an R function is often very fruitful. Traditionally this
has been done via the .C function in R. However, if a user wants to write C code using internal
R data structures, then that can be done using the .Call and .External functions. The syntax
for the calling function in R in each case is similar to that of .C, but the two functions have
different C interfaces. Generally the .Call interface is simpler to use, but .External is a little
more general.

A call to .Call is very similar to .C, for example
.Call("convolve2", a, b)

The first argument should be a character string giving a C symbol name of code that has already
been loaded into R. Up to 65 R objects can passed as arguments. The C side of the interface is

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)

A call to .External is almost identical
.External ("convolveE", a, b)
but the C side of the interface is different, having only one argument

#include <R.h>
#include <Rinternals.h>

SEXP convolveE(SEXP args)

Here args is a LISTSXP, a Lisp-style pairlist from which the arguments can be extracted.

Chapter 5: System and foreign language interfaces 144

In each case the R objects are available for manipulation via a set of functions and macros
defined in the header file Rinternals.h or some S-compatibility macros'® See Section 5.10
[Interface functions .Call and .External], page 155, for details on .Call and .External.

Before you decide to use .Call or .External, you should look at other alternatives. First,
consider working in interpreted R code; if this is fast enough, this is normally the best option.
You should also see if using .C is enough. If the task to be performed in C is simple enough
involving only atomic vectors and requiring no call to R, .C suffices. A great deal of useful
code was written using just .C before .Call and .External were available. These interfaces
allow much more control, but they also impose much greater responsibilities so need to be used
with care. Neither .Call nor .External copy their arguments: you should treat arguments you
receive through these interfaces as read-only.

To handle R objects from within C code we use the macros and functions that have been
used to implement the core parts of R. A public!® subset of these is defined in the header
file Rinternals.h in the directory R_INCLUDE_DIR (default R_HOME/include) that should be
available on any R installation.

A substantial amount of R, including the standard packages, is implemented using the
functions and macros described here, so the R source code provides a rich source of examples
and “how to do it”: do make use of the source code for inspirational examples.

It is necessary to know something about how R objects are handled in C code. All the R
objects you will deal with will be handled with the type SEXP'7, which is a pointer to a structure
with typedef SEXPREC. Think of this structure as a variant type that can handle all the usual
types of R objects, that is vectors of various modes, functions, environments, language objects
and so on. The details are given later in this section and in Section “R Internal Structures” in R
Internals, but for most purposes the programmer does not need to know them. Think rather of
a model such as that used by Visual Basic, in which R objects are handed around in C code (as
they are in interpreted R code) as the variant type, and the appropriate part is extracted for, for
example, numerical calculations, only when it is needed. As in interpreted R code, much use is
made of coercion to force the variant object to the right type.

5.9.1 Handling the effects of garbage collection

We need to know a little about the way R handles memory allocation. The memory allocated for
R objects is not freed by the user; instead, the memory is from time to time garbage collected.
That is, some or all of the allocated memory not being used is freed or marked as re-usable.

The R object types are represented by a C structure defined by a typedef SEXPREC in
Rinternals.h. It contains several things among which are pointers to data blocks and to other
SEXPRECs. A SEXP is simply a pointer to a SEXPREC.

If you create an R object in your C code, you must tell R that you are using the object by
using the PROTECT macro on a pointer to the object. This tells R that the object is in use so it
is not destroyed during garbage collection. Notice that it is the object which is protected, not
the pointer variable. It is a common mistake to believe that if you invoked PROTECT (p) at some
point then p is protected from then on, but that is not true once a new object is assigned to p.

Protecting an R object automatically protects all the R objects pointed to in the corresponding
SEXPREC, for example all elements of a protected list are automatically protected.

The programmer is solely responsible for housekeeping the calls to PROTECT. There is a
corresponding macro UNPROTECT that takes as argument an int giving the number of objects

15 That is, similar to those defined in S version 4 from the 1990s: these are not kept up to date and are not
recommended for new projects.

16 see Chapter 6 [The R API], page 171: note that these are not all part of the APIL.
17 SEXP is an acronym for Simple EXPression, common in LISP-like language syntaxes.

Chapter 5: System and foreign language interfaces 145

to unprotect when they are no longer needed. The protection mechanism is stack-based, so
UNPROTECT (n) unprotects the last n objects which were protected. The calls to PROTECT and
UNPROTECT must balance when the user’s code returns and should balance in all functions. R
will warn about "stack imbalance in .Call" (or .External) if the housekeeping is wrong.

Here is a small example of creating an R numeric vector in C code:

#include <R.h>
#include <Rinternals.h>

SEXP ab;

ab = PROTECT(RF_allocVector (REALSXP, 2));
REAL (ab) [0] = 123.45;

REAL(ab) [1] = 67.89;

UNPROTECT (1) ;

Now, the reader may ask how the R object could possibly get removed during those manip-
ulations, as it is just our C code that is running. As it happens, we can do without the protection
in this example, but in general we do not know (nor want to know) what is hiding behind the
R macros and functions we use, and any of them might cause memory to be allocated, hence
garbage collection and hence our object ab to be removed. It is usually wise to err on the side of
caution and assume that any of the R macros and functions might remove the object.

In some cases it is necessary to keep better track of whether protection is really needed. Be
particularly aware of situations where a large number of objects are generated. The pointer
protection stack has a fixed size (default 10,000) and can become full. It is not a good idea
then to just PROTECT everything in sight and UNPROTECT several thousand objects at the end. It
will almost invariably be possible to either assign the objects as part of another object (which
automatically protects them) or unprotect them immediately after use.

There is a less-used macro UNPROTECT_PTR(s) that unprotects the object pointed to by the
SEXP s, even if it is not the top item on the pointer protection stack. This macro was introduced
for use in the parser, where the code interfacing with the R heap is generated and the generator
cannot be configured to insert proper calls to PROTECT and UNPROTECT. However, UNPROTECT_PTR
is dangerous to use in combination with UNPROTECT when the same object has been protected
multiple times. It has been superseded by multi-set based functions R_PreserveInMSet and
R_ReleaseFromMSet, which protect objects in a multi-set created by R_NewPreciousMSet and
typically itself protected using PROTECT. These functions should not be needed outside parsers.

Sometimes an object is changed (for example duplicated, coerced or grown) yet the current
value needs to be protected. For these cases PROTECT_WITH_INDEX saves an index of the protection
location that can be used to replace the protected value using REPROTECT. For example (from
the internal code for optim)

PROTECT_INDEX ipx;

PROTECT_WITH_INDEX(s = Rf_eval(0S->R_fcall, 0S->R_env), &ipx);
REPROTECT (s = Rf_coerceVector(s, REALSXP), ipx);
Note that it is dangerous to mix UNPROTECT_PTR also with PROTECT_WITH_INDEX, as the
former changes the protection locations of objects that were protected after the one being
unprotected.

There is another way to avoid the effects of garbage collection: a call to R_PreserveObject
adds an object to an internal list of objects not to be collected, and a subsequent call to R_
ReleaseObject removes it from that list. This provides a way for objects which are not returned
as part of R objects to be protected across calls to compiled code: on the other hand it becomes

Chapter 5: System and foreign language interfaces 146

the user’s responsibility to release them when they are no longer needed (and this often requires
the use of a finalizer). It is less efficient than the normal protection mechanism, and should be
used sparingly.

For functions from packages as well as R to safely co-operate in protecting objects, certain
rules have to be followed:

e Pointer-protection balance. Calls to PROTECT and UNPROTECT should balance in each function.
A function may only call UNPROTECT or REPROTECT on objects it has itself protected. Note
that the pointer protection stack balance is restored automatically on non-local transfer of
control (See Section 6.12 [Condition handling and cleanup code|, page 190.), as if a call to
UNPROTECT was invoked with the right argument.

e (aller protection. It is the responsibility of the caller that all arguments passed to a function
are protected and will stay protected for the whole execution of the callee. Typically this is
achieved by PROTECT and UNPROTECT calls.

e Protecting return values. Any R objects returned from a function are unprotected (the callee
must maintain pointer-protection balance), and hence should be protected immediately by
the caller. To be safe against future code changes, assume that any R object returned from
any function may need protection. Note that even when conceptually returning an existing
protected object, that object may be duplicated.

e All functions/macros allocate. To be safe against future code changes, assume that any
function or macro may allocate and hence garbage collector may run and destroy unprotected
objects.

It is always safe and recommended to follow those rules. In fact, several R functions and
macros protect their own arguments and some functions do not allocate or do not allocate when
used in a certain way, but that is subject to change, so relying on that may be fragile. PROTECT
and PROTECT_WITH_INDEX can be safely called with unprotected arguments and UNPROTECT does
not allocate.

5.9.2 Allocating storage

For many purposes it is sufficient to allocate R objects and manipulate those. There are quite a
few Rf_allocXxx functions defined in Rinternals.h—you may want to explore them.

One that is commonly used is Rf _allocVector, the C-level equivalent of R-level vector ()
and its wrappers such as integer() and character(). One distinction is that whereas the R
functions always initialize the elements of the vector, Rf _allocVector only does so for lists,
expressions and character vectors (the cases where the elements are themselves R objects). Other
useful allocation functions are Rf _alloc3DArray, Rf _allocArray, and Rf_allocMatrix.

At times it can be useful to allocate a larger initial result vector and resize it to a shorter
length if that is sufficient. The functions Rf _lengthgets and Rf _xlengthgets accomplish this;
they are analogous to using length(x) <- n in R. Typically these functions return a freshly
allocated object, but in some cases they may re-use the supplied object.

When creating new result objects it can be useful to fill them in with values from an
existing object. The functions Rf_copyVector and Rf_copyMatrix can be used for this. Rf_
copyMostAttributes can also simplify setting up a result object; it is used internally for results
of arithmetic operations.

If storage is required for C objects during the calculations this is best allocated by calling
R_alloc; see Section 6.1 [Memory allocation|, page 172. All of these memory allocation routines
do their own error-checking, so the programmer may assume that they will raise an error and
not return if the memory cannot be allocated.

Chapter 5: System and foreign language interfaces 147

5.9.3 Details of R types

Users of the Rinternals.h macros will need to know how the R types are known internally. The
different R data types are represented in C by SEXPTYPE. Some of these are familiar from R
and some are internal data types. The usual R object modes are given in the table.

SEXPTYPE R equivalent

REALSXP numeric with storage mode double
INTSXP integer

CPLXSXP complex

LGLSXP logical

STRSXP character

VECSXP list (generic vector)
LISTSXP pairlist

DOTSXP a ‘... object

NILSXP NULL

SYMSXP name/symbol

CLOSXP function or function closure
ENVSXP environment

Among the important internal SEXPTYPEs are LANGSXP, CHARSXP, PROMSXP, etc. (N.B.: although
it is possible to return objects of internal types, it is unsafe to do so as assumptions are made
about how they are handled which may be violated at user-level evaluation.) More details are
given in Section “R Internal Structures” in R Internals.

Unless you are very sure about the type of the arguments, the code should check the data
types. Sometimes it may also be necessary to check data types of objects created by evaluating
an R expression in the C code. You can use functions like Rf _isReal, Rf _isInteger and Rf_
isString to do type checking. Other such functions declared in the header file Rinternals.h
include Rf_iisNull, Rf_iisSymbol, Rf _iisLogical, Rf _iisComplex, Rf _iisExpression, and
Rf_iisEnvironment. All of these take a SEXP as argument and return 1 or 0 to indicate TRUE
or FALSE.

What happens if the SEXP is not of the correct type? Sometimes you have no other option
except to generate an error. You can use the function Rf _error for this. It is usually better
to coerce the object to the correct type. For example, if you find that an SEXP is of the type
INTEGER, but you need a REAL object, you can change the type by using

newSexp = PROTECT (Rf_coerceVector (oldSexp, REALSXP));

Protection is needed as a new object is created; the object formerly pointed to by the SEXP is
still protected but now unused.'®

All the coercion functions do their own error-checking, and generate NAs with a warning or
stop with an error as appropriate.

Note that these coercion functions are not the same as calling as.numeric (and so on) in R
code, as they do not dispatch on the class of the object. Thus it is normally preferable to do the
coercion in the calling R code.

So far we have only seen how to create and coerce R objects from C code, and how to extract
the numeric data from numeric R vectors. These can suffice to take us a long way in interfacing
R objects to numerical algorithms, but we may need to know a little more to create useful return
objects.

18 1f no coercion was required, Rf _coerceVector would have passed the old object through unchanged.

Chapter 5: System and foreign language interfaces 148

5.9.4 Attributes

Many R objects have attributes: some of the most useful are classes and the dim and dimnames
that mark objects as matrices or arrays. It can also be helpful to work with the names attribute
of vectors.

To illustrate this, let us write code to take the outer product of two vectors (which outer
and %o% already do). As usual the R code is simple

out <- function(x, y)

{
storage.mode(x) <- storage.mode(y) <- "double"
.Call("out", x, y)

where we expect x and y to be numeric vectors (possibly integer), possibly with names. This
time we do the coercion in the calling R code.

C code to do the computations is
#include <R.h>

#include <Rinternals.h>

SEXP out (SEXP x, SEXP y)

{
int nx = Rf_length(x), ny = Rf_length(y);
SEXP ans = PROTECT(Rf_allocMatrix(REALSXP, nx, ny));
double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);
for(int 1 = 0; i < nx; i++) {
double tmp = rx[i];
for(int j = 0; j < ny; j++)
rans[i + nx*j] = tmp * ry[j]l;
}
UNPROTECT (1) ;
return ans;
}

Note the way REAL is used: as it is a function call it can be considerably faster to store the result
and index that.

However, we would like to set the dimnames of the result. We can use

#include <R.h>
#include <Rinternals.h>

Chapter 5: System and foreign language interfaces 149

SEXP out (SEXP x, SEXP y)

{
int nx = Rf_length(x), ny = Rf_length(y);
SEXP ans = PROTECT(Rf_allocMatrix (REALSXP, nx, ny));
double *rx = REAL(x), *ry = REAL(y), *rans = REAL(ans);

for(int 1 = 0; i < nx; i++) {
double tmp = rx[i];
for(int j = 0; j < ny; j++)
rans[i + nx*j] = tmp * ry[j];

}

SEXP dimnames = PROTECT(Rf_allocVector (VECSXP, 2));
SET_VECTOR_ELT(dimnames, 0, Rf_getAttrib(x, R_NamesSymbol));
SET_VECTOR_ELT(dimnames, 1, Rf_getAttrib(y, R_NamesSymbol));
Rf_setAttrib(ans, R_DimNamesSymbol, dimnames);

UNPROTECT (2) ;
return ans;

3

This example introduces several new features. The Rf_getAttrib and Rf_setAttrib funct-
ions get and set individual attributes. Their second argument is a SEXP defining the name in the
symbol table of the attribute we want; these and many such symbols are defined in the header
file Rinternals.h.

There are shortcuts here too: the functions Rf_namesgets, Rf _dimgets and Rf _dimnamesgets
are the internal versions of the default methods of names<-, dim<- and dimnames<- (for
vectors and arrays), and there are functions such as Rf_GetColNames, Rf _GetRowNames, Rf_
GetMatrixDimnames and Rf_GetArrayDimnames.

What happens if we want to add an attribute that is not pre-defined? We need to add a
symbol for it via a call to Rf _install. Suppose for illustration we wanted to add an attribute
"version" with value 3.0. We could use

SEXP version;

version = PROTECT(Rf_allocVector (REALSXP, 1));
REAL (version) [0] = 3.0;

Rf_setAttrib(ans, Rf_install("version"), version);
UNPROTECT (1) ;

Using Rf _install when it is not needed is harmless and provides a simple way to retrieve the
symbol from the symbol table if it is already installed. However, the lookup takes a non-trivial
amount of time, so consider code such as

static SEXP VerSymbol = NULL;

if (VerSymbol == NULL) VerSymbol = Rf_install("version");
if it is to be done frequently.
This example can be simplified by another convenience function:

SEXP version = PROTECT(Rf_ScalarReal(3.0));
Rf_setAttrib(ans, Rf_install("version"), version);
UNPROTECT (1) ;

If a result is to be a vector with all elements named, then Rf _mkNamed can be used to allocate
a vector of a specified type. Names are provided as a C vector of strings terminated by an empty
string:

Chapter 5: System and foreign language interfaces 150

const char *nms [] = {"Xi" , "yi" R Noqin s " n};
Rf_mkNamed (VECSXP, nms);
Symbols can also be installed or retrieved based on a name in a CHARSXP object using either
Rf_installChar or Rf_installTrChar. These used to differ in handling character encoding but
have been identical since R 4.0.0.

5.9.5 Classes

In R the class is just the attribute named "class" so it can be handled as such, but there is
a shortcut Rf_classgets. Suppose we want to give the return value in our example the class
"mat". We can use

#include <R.h>
#include <Rinternals.h>

SEXP ans, dim, dimnames, class;

class = PROTECT(Rf_allocVector (STRSXP, 1));
SET_STRING_ELT(class, 0, Rf_mkChar("mat"));
Rf_classgets(ans, class);

UNPROTECT (4) ;

return ans;

3

As the value is a character vector, we have to know how to create that from a C character array,
which we do using the function Rf _mkChar.

5.9.6 S4 objects

Several functions are available for working with S4 objects and classes in C, including;:

SEXP Rf_allocS40bject(void);

SEXP Rf_asS4(SEXP, Rboolean, int);

int R_check_class_etc(SEXP x, const char **valid);

SEXP R_do_MAKE_CLASS(const char *what);

SEXP R_do_new_object (SEXP class_def);

SEXP R_do_slot(SEXP obj, SEXP name);

SEXP R_do_slot_assign(SEXP obj, SEXP name, SEXP value);
SEXP R_getClassDef (const char *what);

int R_has_slot(SEXP obj, SEXP name);

5.9.7 Handling lists

Some care is needed with lists, as R moved early on from using LISP-like lists (now called
“pairlists”) to S-like generic vectors. As a result, the appropriate test for an object of mode 1ist
is Rf _isNewList, and we need Rf _allocVector (VECSXP, n) and not Rf_allocList(n).

List elements can be retrieved or set by direct access to the elements of the generic vector.
Suppose we have a list object

a <-1list(f =1, g=2, h=3)
Then we can access a$g as a[[2]] by

double g;

g = REAL(VECTOR_ELT(a, 1)) [0];

This can rapidly become tedious, and the following function (based on one in package stats)
is very useful:

Chapter 5: System and foreign language interfaces 151

/* get the list element named str (ASCII), or return NULL */

SEXP getListElement (SEXP list, const char *str)

{
SEXP elmt = R_NilValue, names = Rf_getAttrib(list, R_NamesSymbol);
for (int i = 0; i < Rf_length(list); i++)
if (strcmp (CHAR(STRING_ELT (names, i)), str) == 0) {
/* ASCII only */
elmt = VECTOR_ELT(list, i);
break;
}
return elmt;
}

and enables us to say

double g;
g = REAL(getListElement(a, "g"))[0];

This code only works for names that are ASCII (see Section 5.15 [Character encoding issues],
page 168).

5.9.8 Handling character data

R character vectors are stored as STRSXPs, a vector type like VECSXP where every element is of type
CHARSXP. The CHARSXP elements of STRSXPs are accessed using STRING_ELT and SET_STRING_ELT.

CHARSXPs are read-only objects and must never be modified. In particular, the C-style string
contained in a CHARSXP should be treated as read-only and for this reason the CHAR function used
to access the character data of a CHARSXP returns (const char #*) (this also allows compilers to
issue warnings about improper use). Since CHARSXPs are immutable, the same CHARSXP can be
shared by any STRSXP needing an element representing the same string. R maintains a global
cache of CHARSXPs so that there is only ever one CHARSXP representing a given string in memory.
It most cases it is easier to use Rf _translateChar or Rf_translateCharUTF8 to obtain the C
string and it is safer against potential future changes in R (see Section 5.15 [Character encoding
issues|, page 168).

You can obtain a CHARSXP by calling Rf _mkChar and providing a NUL-terminated C-style
string. This function will return a pre-existing CHARSXP if one with a matching string already
exists, otherwise it will create a new one and add it to the cache before returning it to you. The
variant Rf _mkCharLen can be used to create a CHARSXP from part of a buffer and will ensure
null-termination.

Note that R character strings are restricted to 2731 - 1 bytes, and hence so should the input
to Rf _mkChar be (C allows longer strings on 64-bit platforms).

5.9.9 Working with closures
New function closure objects can be created with R_mkClosure:
SEXP R_mkClosure(SEXP formals, SEXP body, SEXP rho);

The components of a closure can be extracted with R_ClosureFormals, R_ClosureBody,
and R_ClosureEnv. For a byte compiled closure R_ClosureBody returns the compiled body.
R_ClosureExpr returns the body expression for both compiled and uncompiled closures. The
expression for a compiled object can be obtained with R_BytecodeExpr.

Chapter 5: System and foreign language interfaces 152

5.9.10 Finding and setting variables

It will be usual that all the R objects needed in our C computations are passed as arguments to
.Call or .External, but it is possible to find the values of R objects from within the C given
their names. The following code is the equivalent of get (name, envir = rho).

SEXP getvar (SEXP name, SEXP rho)

{
SEXP ans;
if (!Rf_isString(name) || Rf_length(name) != 1)
Rf_error("name is not a single string");
if ('Rf_isEnvironment (rho))
Rf_error("rho should be an environment");
ans = R_getVar(Rf_installChar (STRING_ELT (name, 0)), rho, TRUE);
if (TYPEOF(ans) != REALSXP || Rf_length(ans) == 0)
Rf_error("value is not a numeric vector with at least one element");
Rprintf("first value is %f\n", REAL(ans) [0]);
return R_NilValue;
}

The main work is done by R_getVar, but to use it we need to install name as a name in the
symbol table. As we wanted the value for internal use, we return NULL.

R_getVar is similar to the R function get. It signals an error if there is no binding for the
variable in the environment. R_getVarEx can be used to return a default value if no binding is
found; this corresponds to the R function get0. The third argument to R_getVar and R_getVarEx
corresponds to the inherits argument to the R function get.

Functions with syntax

void Rf_defineVar (SEXP symbol, SEXP value, SEXP rho)
void Rf_setVar(SEXP symbol, SEXP value, SEXP rho)

can be used to assign values to R variables. Rf _defineVar creates a new binding or changes
the value of an existing binding in the specified environment frame; it is the analogue of
assign(symbol, value, envir = rho, inherits = FALSE), but unlike assign, Rf _defineVar
does not make a copy of the object value.!” Rf_setVar searches for an existing binding for
symbol in rho or its enclosing environments. If a binding is found, its value is changed to value.
Otherwise, a new binding with the specified value is created in the global environment. This
corresponds to assign(symbol, value, envir = rho, inherits = TRUE).

At times it may also be useful to create a new environment frame in C code. R_NewEnv is a C
version of the R function new.env:

SEXP R_NewEnv(SEXP enclos, int hash, int size)

5.9.11 Some convenience functions

Some operations are done so frequently that there are convenience functions to handle them.
(All these are provided via the header file Rinternals.h.)

Suppose we wanted to pass a single logical argument ignore_quotes: we could use
int ign = Rf_asLogical(ignore_quotes);
if (ign == NA_LOGICAL) Rf_error("’ignore_quotes’ must be TRUE or FALSE");

which will do any coercion needed (at least from a vector argument), and return NA_LOGICAL
if the value passed was NA or coercion failed. There are also Rf _asInteger, Rf_asReal and

¥ You can assign a copy of the object in the environment frame rho using defineVar(symbol,
duplicate(value), rho)).

Chapter 5: System and foreign language interfaces 153

Rf_asComplex. The function Rf_asChar returns a CHARSXP. All of these functions ignore any
elements of an input vector after the first.

Rf_asRboolean is a stricter version of Rf _asLogical introduced in R 4.5.0. It returns type
Rboolean and gives an error for an input of length other than one, and for coercion failure.
Rf_asBool is a variant returning the C99/C23/C++ type bool.

The function Rf_asCharacterFactor converts a factor to a character vector.

To return a length-one real vector we can use

double x;

return Rf_ScalarReal(x);

and there are versions of this for all the atomic vector types (those for a length-one character
vector being Rf_ScalarString with argument a CHARSXP and Rf_mkString with argument

const char *).

SEXP Rf_ScalarReal(double);

SEXP Rf_ScalarInteger(int);

SEXP Rf_ScalarLogical(int)

SEXP Rf_ScalarRaw(Rbyte);

SEXP Rf_ScalarComplex(Rcomplex) ;
SEXP Rf_ScalarString(SEXP);

SEXP Rf_mkString(const char *);

Some of the Rf _isXXXX functions differ from their apparent R-level counterparts: for example
Rf_isVector is true for any atomic vector type (Rf _isVectorAtomic) and for lists and express-
ions (Rf_isVectorList) (with no check on attributes). Rf_isMatrix is a test of a length-2

"dim" attribute.

Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean
Rboolean

Rf_isVector (SEXP);
Rf_isVectorAtomic (SEXP);
Rf_isVectorList (SEXP);
Rf_isMatrix(SEXP);
Rf_isPairList (SEXP);
Rf_isPrimitive(SEXP);
Rf_isTs (SEXP) ;
Rf_isNumeric (SEXP) ;
Rf_isArray(SEXP);
Rf_isFactor (SEXP);
Rf_isObject (SEXP) ;
Rf_isFunction(SEXP);
Rf_isLanguage (SEXP) ;
Rf_isNewList (SEXP) ;
Rf_isList (SEXP);
Rf_isOrdered (SEXP) ;
Rf_isUnordered (SEXP) ;
Rf_isS4 (SEXP) ;
Rf_isNumber (SEXP) ;
Rf_isDataFrame (SEXP);

Some additional predicates:

Chapter 5: System and foreign language interfaces 154

Rboolean Rf_isBlankString(const char *);
Rboolean Rf_StringBlank(SEXP);

Rboolean Rf_StringFalse(const char *);
Rboolean Rf_StringTrue(const char *);
int IS_LONG_VEC(SEXP);

int IS_SCALAR(SEXP, int);

There are a series of small macros/functions to help construct pairlists and language objects
(whose internal structures just differ by SEXPTYPE). Function CONS(u, v) is the basic building
block: it constructs a pairlist from u followed by v (which is a pairlist or R_NilValue). LCONS
is a variant that constructs a language object. Functions Rf_1ist1 to Rf_list6 construct a
pairlist from one to six items, and Rf _langl to Rf _lang6 do the same for a language object (a
function to call plus zero to five arguments). Functions Rf_elt and Rf _lastElt find the i-th
element and the last element of a pairlist, and Rf_nthcdr returns a pointer to the n-th position
in the pairlist (whose CAR is the n-th item).

Functions Rf _str2type and Rf_type2str map R length-one character strings to and from
SEXPTYPE numbers, and Rf_type2char maps numbers to C character strings. Rf_type2str_
nowarn does not issue a warning if the SEXPTYPE is invalid.

5.9.11.1 Semi-internal convenience functions

There is quite a collection of functions that may be used in your C code if you are willing to
adapt to rare API changes. These typically contain the “workhorses” of their R counterparts.

Functions Rf_any_duplicated and Rf_any_duplicated3 are fast versions of R’s
any(duplicated(.)).

Function R_compute_identical corresponds to R’s identical function. Function R_
BindingIsLocked corresponds to R’s bindingIsLocked function. Function R_ParentEnv corres-
ponds to R’s parent.env.

The C functions Rf _inherits and Rf_topenv correspond to the R functions of the same
base name. The C function Rf _GetOptionl corresponds to the R function getOption without
specifying a default. Rf_GetOptionWidth returns the value of the width option as an int. The
C function Rf_nlevels returns the number of levels of a factor. Unlike its R counterpart it
always returns zero for non-factors.

For vectors the C function Rf _duplicated returns a logical vector indicating for each element
whether it is duplicated or not. A second argument specifies the direction of the search.

The C function R_1sInternal3 returns a character vector of the names of variables in an
environment. The second and third arguments specify whether all names are desired and whether
the result should be sorted.

Some convenience functions for working with pairlist objects include Rf _copyListMatrix,
Rf_listAppend, Rf _isVectorizable, Rf _VectorToPairList, and Rf_PairToVectorList

Some convenience functions for working with name spaces and environments include
R_existsVarInFrame, R_removeVarFromFrame, R_PackageEnvName, R_IsPackageEnv,
R_FindNamespace, R_IsNamespaceEnv, and R_NamespaceEnvSpec.

The C functions Rf _match and Rf_pmatch correspond to the R functions of the same base
name. The C-level workhorse for partial matching is provided by Rf _psmatch.

The C functions R_forceAndCall and Rf_isUnsorted correspond to the R functions
forceAndCall and is.unsorted.

5.9.12 Named objects and copying

[The NAMED mechanism has been replaced by reference counting,]

Chapter 5: System and foreign language interfaces 155

When assignments are done in R such as

x <= 1:10

y <- X
the named object is not necessarily copied, so after those two assignments y and x are bound to
the same SEXPREC (the structure a SEXP points to). This means that any code which alters one
of them has to make a copy before modifying the copy if the usual R semantics are to apply.
Note that whereas .C and .Fortran do copy their arguments, .Call and .External do not. So
Rf_duplicate is commonly called on arguments to .Call before modifying them. If only the
top level is modified it may suffice to call Rf _shallow_duplicate.

At times it may be necessary to copy attributes from one object to another. This can be done
using DUPLICATE_ATTRIB or SHALLOW_DUPLICATE_ATTRIB ANY_ATTRIB checks whether there are
any attributes and CLEAR_ATTRIB removes all attributes.

However, at least some of this copying is unneeded. In the first assignment shown, x <- 1:10,
R first creates an object with value 1:10 and then assigns it to x but if x is modified no copy is
necessary as the temporary object with value 1:10 cannot be referred to again. R distinguishes
between named and unnamed objects via a field in a SEXPREC that can be accessed via the
macros NAMED and SET_NAMED. This can take values

0 The object is not bound to any symbol

1 The object has been bound to exactly one symbol

>= 2 The object has potentially been bound to two or more symbols, and one should
act as if another variable is currently bound to this value. The maximal value is
NAMEDMAX.

Note the past tenses: R does not do currently do full reference counting and there may currently
be fewer bindings.

It is safe to modify the value of any SEXP for which NAMED (foo) is zero, and if NAMED (foo) is
two or more, the value should be duplicated (via a call to Rf _duplicate) before any modification.
Note that it is the responsibility of the author of the code making the modification to do the
duplication, even if it is x whose value is being modified after y <- x.

The case NAMED (foo) == 1 allows some optimization, but it can be ignored (and duplication
done whenever NAMED (foo) > 0). (This optimization is not currently usable in user code.) It is
intended for use within replacement functions. Suppose we used

x <= 1:10

foo(x) <- 3
which is computed as

x <= 1:10

x <= "foo<-"(x, 3)
Then inside "foo<-" the object pointing to the current value of x will have NAMED (foo) as one,
and it would be safe to modify it as the only symbol bound to it is x and that will be rebound
immediately. (Provided the remaining code in "foo<-" make no reference to x, and no one is
going to attempt a direct call such as y <= "foo<-"(x).)

This mechanism was replaced in R 4.0.0. To support future changes, package code should use
NO_REFERENCES, MAYBE_REFERENCED, NOT_SHARED, MAYBE_SHARED, and MARK_NOT_MUTABLE.

5.10 Interface functions .Call and .External

In this section we consider the details of the R/C interfaces.

These two interfaces have almost the same functionality. .Call is based on the interface of
the same name in S version 4, and .External is based on R’s .Internal. .External is more
complex but allows a variable number of arguments.

Chapter 5: System and foreign language interfaces 156

5.10.1 Calling .Call

Let us convert our finite convolution example to use .Call. The calling function in R is
conv <- function(a, b) .Call("convolve2", a, b)

which could hardly be simpler, but as we shall see all the type coercion is transferred to the C
code, which is

#include <R.h>
#include <Rinternals.h>

SEXP convolve2(SEXP a, SEXP b)

{
int na, nb, nab;
double *xa, *xb, *xab;
SEXP ab;
a = PROTECT(Rf_coerceVector(a, REALSXP));
b = PROTECT(Rf_coerceVector (b, REALSXP));
na = Rf_length(a); nb = Rf_length(b); nab = na + nb - 1;
ab = PROTECT(Rf_allocVector (REALSXP, nab));
xa = REAL(a); xb = REAL(b); xab = REAL(ab);
for(int i = 0; i < nab; i++) xab[i] = 0.0;
for(int 1 = 0; i < na; i++)
for(int j = 0; j < nb; j++) xabl[i + jl += xalil * xb[j];
UNPROTECT (3) ;
return ab;
}

5.10.2 Calling .External

We can use the same example to illustrate .External. The R code changes only by replacing
.Call by .External

conv <- function(a, b) .External("convolveE", a, b)

but the main change is how the arguments are passed to the C code, this time as a single SEXP.
The only change to the C code is how we handle the arguments.

#include <R.h>
#include <Rinternals.h>

SEXP convolveE(SEXP args)

{
int i, j, na, nb, nab;
double *xa, *xb, *xab;
SEXP a, b, ab;
a = PROTECT(Rf_coerceVector (CADR(args), REALSXP));
b = PROTECT (Rf_coerceVector (CADDR(args), REALSXP));
}

Once again we do not need to protect the arguments, as in the R side of the interface they are
objects that are already in use. The macros

Chapter 5: System and foreign language interfaces 157

first = CADR(args);

second = CADDR(args) ;
third = CADDDR(args);
fourth = CAD4R(args);
fifth = CADSR(args);

provide convenient ways to access the first five arguments. More generally we can use the CDR
and CAR macros as in

args = CDR(args); a = CAR(args);
args = CDR(args); b = CAR(args);

which clearly allows us to extract an unlimited number of arguments (whereas .Call has a limit,
albeit at 65 not a small one).

More usefully, the .External interface provides an easy way to handle calls with a variable
number of arguments, as length(args) will give the number of arguments supplied (of which
the first is ignored). We may need to know the names (‘tags’) given to the actual arguments,
which we can by using the TAG macro and using something like the following example, that prints
the names and the first value of its arguments if they are vector types.

SEXP showArgs (SEXP args)
{
void *vmax = vmaxget();
args = CDR(args); /* skip ’name’ */
for(int i = 0; args != R_NilValue; i++, args = CDR(args)) {
const char *name =
Rf_isNull(TAG(args)) 7 "" : Rf_translateChar (PRINTNAME(TAG(args)));
SEXP el = CAR(args);
if (length(el) == 0) {
Rprintf ("[%d] ’%s’ R type, length O\n", i+1, name);
continue;
}
switch(TYPEQOF (el)) {
case REALSXP:
Rprintf ("[%d] ’%s’ %f\n", i+1, name, REAL(el)[0]);
break;
case LGLSXP:
case INTSXP:
Rprintf (" [%d] ’%s’ %d\n", i+1, name, INTEGER(el) [0]);

break;
case CPLXSXP:
{

Rcomplex cpl = COMPLEX(el) [0];

Rprintf (" [%d] ’%s’ %f + %fi\n", i+1, name, cpl.r, cpl.i);
}

break;
case STRSXP:
Rprintf (" [%d] ’%s’ %s\n", i+1, name,
Rf_translateChar (STRING_ELT(el, 0)));
break;

Chapter 5: System and foreign language interfaces 158

default:
Rprintf ("[%d] ’%s’ R type\n", i+1, name);

}
vmaxset (vmax) ;
return R_NilValue;

}
This can be called by the wrapper function
showArgs <- function(...) invisible(.External("showArgs", ...))
Note that this style of programming is convenient but not necessary, as an alternative style is
showArgsl <- function(...) invisible(.Call("showArgs1", list(...)))
The (very similar) C code is in the scripts.
Additional functions for accessing pairlist components are CAAR, CDAR, CDDR, and CDDDR.

These components can be modified with SETCAR, SETCDR, SETCADR, SETCADDR, SETCADDDR, and
SETCADA4R.

5.10.3 Missing and special values

One piece of error-checking the .C call does (unless NAOK is true) is to check for missing (NA)
and IEEE special values (Inf, -Inf and NaN) and give an error if any are found. With the .Call
interface these will be passed to our code. In this example the special values are no problem, as
IEC 60559 arithmetic will handle them correctly. In the current implementation this is also true
of NA as it is a type of NaN, but it is unwise to rely on such details. Thus we will re-write the
code to handle NAs using macros defined in R_ext/Arith.h included by R.h.

The code changes are the same in any of the versions of convolve2 or convolveE:

for(int i = 0; i < na; i++)
for(int j = 0; j < nb; j++)
if (ISNA(xalil) || ISNA(xb[j]) || ISNA(xab[i + j1))
xab[i + j] = NA_REAL;
else
xab[i + j] += xa[i] * xb[j];

Note that the ISNA macro, and the similar macros ISNAN (which checks for NaN or NA) and
R_FINITE (which is false for NA and all the special values), only apply to numeric values of type
double. Missingness of integers, logicals and character strings can be tested by equality to
the constants NA_INTEGER, NA_LOGICAL and NA_STRING. These and NA_REAL can be used to set
elements of R vectors to NA.

The constants R_NaN, R_PosInf and R_NegInf can be used to set doubles to the special
values.

5.11 Evaluating R expressions from C

The main function we will use is
SEXP Rf_eval (SEXP expr, SEXP rho);

the equivalent of the interpreted R code eval(expr, envir = rho) (so rho must be an environ-
ment), although we can also make use of Rf _findVar, Rf _defineVar and Rf_findFun (which
restricts the search to functions).

To see how this might be applied, here is a simplified internal version of lapply for expressions,
used as

Chapter 5: System and foreign language interfaces 159

a <- list(a = 1:5, b = rnorm(10), test = runif(100))
.Call("lapply", a, quote(sum(x)), new.env())

with C code
SEXP lapply(SEXP list, SEXP expr, SEXP rho)

{

}

int n = Rf_length(list);
SEXP ans;

if ('Rf_isNewList(list)) Rf_error("’list’ must be a list");
if (!Rf_isEnvironment (rho)) Rf_error("’rho’ should be an environment");
ans = PROTECT(Rf_allocVector (VECSXP, n));
for(int i = 0; i < n; i++) {
Rf_defineVar(Rf_install("x"), VECTOR_ELT(list, i), rho);
SET_VECTOR_ELT (ans, i, Rf_eval(expr, rho));
}
Rf_setAttrib(ans, R_NamesSymbol, Rf_getAttrib(list, R_NamesSymbol));
UNPROTECT (1) ;
return ans;

It would be closer to lapply if we could pass in a function rather than an expression. One
way to do this is via interpreted R code as in the next example, but it is possible (if somewhat
obscure) to do this in C code. The following is based on the code in src/main/optimize.c.

SEXP lapply2(SEXP list, SEXP fn, SEXP rho)

{

}
used by

int n = length(list);
SEXP R_fcall, ans;

if ('\Rf_isNewList(list)) Rf_error("’list’ must be a list");
if ('\Rf_isFunction(fn)) Rf_error("’fn’ must be a function");
if ('Rf_isEnvironment (rho)) Rf_error("’rho’ should be an environment");
R_fcall = PROTECT(Rf_lang2(fn, R_NilValue));
ans = PROTECT(Rf_allocVector (VECSXP, n));
for(int 1 = 0; i < n; i++) {
SETCADR(R_fcall, VECTOR_ELT(list, i));
SET_VECTOR_ELT(ans, i, Rf_eval(R_fcall, rho));
}
Rf_setAttrib(ans, R_NamesSymbol, Rf_getAttrib(list, R_NamesSymbol));
UNPROTECT (2) ;
return ans;

.Call("lapply2", a, sum, new.env())

Function Rf _lang?2 creates an executable pairlist of two elements, but this will only be clear to
those with a knowledge of a LISP-like language.

As a more comprehensive example of constructing an R call in C code and evaluating,
consider the following fragment. Similar code appears in the definition of do_docall in
src/main/coerce.c

SEXP s, t;
t = s = PROTECT(RF_allocLang(3));
SETCAR(t, Rf_install("print")); t = CDR(t);

Chapter 5: System and foreign language interfaces 160

SETCAR(t, CAR(a)); t = CDR(%t);
SETCAR(t, Rf_ScalarInteger(digits));
SET_TAG(t, Rf_install("digits"));
Rf_eval(s, env);

UNPROTECT (1) ;

The function Rf_allocLang is available as of R 4.4.1; for older versions replace Rf_
allocLang(3) with

LCONS(R_NilValue, Rf_allocList(2))

At this point CAR(a) is the R object to be printed, the current attribute. There are three steps:
the call is constructed as a pairlist of length 3, the list is filled in, and the expression represented
by the pairlist is evaluated.

A pairlist is quite distinct from a generic vector list, the only user-visible form of list in R. A
pairlist is a linked list (with CDR(t) computing the next entry), with items (accessed by CAR(t))
and names or tags (set by SET_TAG). In this call there are to be three items, a symbol (pointing
to the function to be called) and two argument values, the first unnamed and the second named.
Setting the type to LANGSXP makes this a call which can be evaluated.

Customarily, the evaluation environment is passed from the calling R code (see rho above). In
special cases it is possible that the C code may need to obtain the current evaluation environment
which can be done via R_GetCurrentEnv() function.

5.11.1 Zero-finding

In this section we re-work the example of Becker, Chambers & Wilks (1988, pp.~205-10) on
finding a zero of a univariate function. The R code and an example are

zero <- function(f, guesses, tol = le-7) {

f.check <- function(x) {
x <- £f(x)
if (!is.numeric(x)) stop("Need a numeric result")
as.double(x)

}

.Call("zero", body(f.check), as.double(guesses), as.double(tol),

new.env())

cubel <- function(x) (x"2 + 1) * (x - 1.5)
zero(cubel, c(0, 5))

where this time we do the coercion and error-checking in the R code. The C code is

SEXP mkans(double x)

{
// no need for PROTECT() here, as REAL(.) does not allocate:

SEXP ans = Rf_allocVector (REALSXP, 1);
REAL(ans) [0] = x;
return ans;

Chapter 5: System and foreign language interfaces 161

double feval(double x, SEXP f, SEXP rho)

{
// a version with (too) much PROTECT()ion .. "better safe than sorry"
SEXP symbol, value;
PROTECT (symbol = Rf_install("x"));
PROTECT (value = mkans(x));
Rf_defineVar(symbol, value, rho);
UNPROTECT (2) ;
return(REAL(Rf_eval(f, rho))[0]);
}
SEXP zero(SEXP f, SEXP guesses, SEXP stol, SEXP rho)
{
double x0 = REAL(guesses) [0], x1 = REAL(guesses) [1],
tol = REAL(stol) [0];
double f0, f1, fc, xc;
if(tol <= 0.0) Rf_error("non-positive tol value");
f0 = feval(x0, f, rho); f1 = feval(xl, f, rho);
if (f0 == 0.0) return mkans(x0);
if(f1 == 0.0) return mkans(x1);
if (fO0*f1 > 0.0) error("x[0] and x[1] have the same sign");
for(;5;) {
xc = 0.5%(x0+x1);
if (fabs(x0-x1) < tol) return mkans(xc);
fc = feval(xc, f, rho);
if (fc == 0) return mkans(xc);
if (fO*xfc > 0.0) {
x0 = xc; fO = fc;
} else {
x1 = xc; f1 = fc;
}
}
}

5.11.2 Calculating numerical derivatives

We will use a longer example (by Saikat DebRoy) to illustrate the use of evaluation and .External.
This calculates numerical derivatives, something that could be done as effectively in interpreted
R code but may be needed as part of a larger C calculation.

An interpreted R version and an example are

Chapter 5: System and foreign language interfaces 162

numeric.deriv <- function(expr, theta, rho=sys.frame(sys.parent()))
{
eps <- sqrt(.Machine$double.eps)
ans <- eval(substitute(expr), rho)
grad <- matrix(, length(ans), length(theta),
dimnames=1ist (NULL, theta))
for (i in seq_along(theta)) {
old <- get(thetal[i], envir=rho)
delta <- eps * max(1l, abs(old))
assign(thetal[i], old+delta, envir=rho)
ansl <- eval(substitute(expr), rho)
assign(thetali], old, envir=rho)
grad[, i] <- (ansl - ans)/delta
}
attr(ans, "gradient") <- grad
ans
}
omega <- 1:5; x <= 1; y <= 2
numeric.deriv(sin(omega*x*y), c("x", "y"))

where expr is an expression, theta a character vector of variable names and rho the environment
to be used.

For the compiled version the call from R will be
.External ("numeric_deriv", expr, theta, rho)
with example usage

.External ("numeric_deriv", quote(sin(omega*x*y)),
c("x", "y"), .GlobalEnv)

Note the need to quote the expression to stop it being evaluated in the caller.
Here is the complete C code which we will explain section by section.

#include <R.h>
#include <Rinternals.h>
#include <float.h> /* for DBL_EPSILON */

SEXP numeric_deriv(SEXP args)
{

SEXP theta, expr, rho, ans, ansl, gradient, par, dimnames;
double tt, xx, delta, eps = sqrt(DBL_EPSILON), *rgr, *rans;
int i, start;

expr = CADR(args);

if ('Rf_isString(theta = CADDR(args)))
Rf_error("theta should be of type character");

if (!Rf _isEnvironment(rho = CADDDR(args)))
Rf_error("rho should be an environment");

ans = PROTECT(Rf_coerceVector(eval(expr, rho), REALSXP));
gradient = PROTECT(Rf_allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));
rgr = REAL(gradient); rans = REAL(ans);

Chapter 5: System and foreign language interfaces 163

for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
par = PROTECT(Rf_findVar (Rf_installChar (STRING_ELT(theta, i)), rho));
tt = REAL(par) [0];
xx = fabs(tt);
delta = (xx < 1) 7 eps : xXx*eps;
REAL(par) [0] += delta;
ansl = PROTECT(Rf_coerceVector (Rf _eval(expr, rho), REALSXP));
for(int j = 0; j < LENGTH(ans); j++)
rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;
REAL (par) [0] = tt;
UNPROTECT(2); /* par, ansl */
}

dimnames = PROTECT(Rf_allocVector (VECSXP, 2));
SET_VECTOR_ELT(dimnames, 1, theta);
Rf_dimnamesgets(gradient, dimnames);
Rf_setAttrib(ans, Rf_install("gradient"), gradient);
UNPROTECT(3); /* ans gradient dimnames */
return ans;
}
The code to handle the arguments is
expr = CADR(args);
if ('Rf_isString(theta = CADDR(args)))
Rf_error("theta should be of type character");
if ('Rf_isEnvironment (rho = CADDDR(args)))
Rf_error("rho should be an environment");
Note that we check for correct types of theta and rho but do not check the type of expr. That
is because eval can handle many types of R objects other than EXPRSXP. There is no useful
coercion we can do, so we stop with an error message if the arguments are not of the correct
mode.
The first step in the code is to evaluate the expression in the environment rho, by
ans = PROTECT(Rf_coerceVector(eval(expr, rho), REALSXP));
We then allocate space for the calculated derivative by
gradient = PROTECT(Rf_allocMatrix(REALSXP, LENGTH(ans), LENGTH(theta)));
The first argument to Rf _allocMatrix gives the SEXPTYPE of the matrix: here we want it to be
REALSXP. The other two arguments are the numbers of rows and columns. (Note that LENGTH is
intended to be used for vectors: Rf _length is more generally applicable.)
for(i = 0, start = 0; i < LENGTH(theta); i++, start += LENGTH(ans)) {
par = PROTECT(Rf_findVar (Rf_installChar (STRING_ELT (theta, i)), rho));
Here, we are entering a for loop. We loop through each of the variables. In the for loop, we
first create a symbol corresponding to the i-th element of the STRSXP theta. Here, STRING_
ELT(theta, i) accesses the i-th element of the STRSXP theta. installChar() installs the
element as a name and Rf _findVar finds its value.
tt = REAL(par) [0];
xx = fabs(tt);
delta = (xx < 1) 7 eps : xXx*eps;
REAL(par) [0] += delta;
ansl = PROTECT(Rf_coerceVector(eval(expr, rho), REALSXP));
We first extract the real value of the parameter, then calculate delta, the increment to be
used for approximating the numerical derivative. Then we change the value stored in par (in

Chapter 5: System and foreign language interfaces 164

environment rho) by delta and evaluate expr in environment rho again. Because we are directly
dealing with original R memory locations here, R does the evaluation for the changed parameter
value.

for(int j = 0; j < LENGTH(ans); j++)
rgr[j + start] = (REAL(ans1)[j] - rans[j])/delta;
REAL (par) [0] = tt;
UNPROTECT (2) ;
}

Now, we compute the i-th column of the gradient matrix. Note how it is accessed: R stores
matrices by column (like Fortran).

dimnames = PROTECT(Rf_allocVector (VECSXP, 2));
SET_VECTOR_ELT(dimnames, 1, theta);
Rf_dimnamesgets(gradient, dimnames);
Rf_setAttrib(ans, install("gradient"), gradient);
UNPROTECT (3) ;

return ans;

¥

First we add column names to the gradient matrix. This is done by allocating a list (a VECSXP)
whose first element, the row names, is NULL (the default) and the second element, the column
names, is set as theta. This list is then assigned as the attribute having the symbol R_
DimNamesSymbol. Finally we set the gradient matrix as the gradient attribute of ans, unprotect
the remaining protected locations and return the answer ans.

5.12 Parsing R code from C

Suppose an R extension wants to accept an R expression from the user and evaluate it. The
previous section covered evaluation, but the expression will be entered as text and needs to be
parsed first. A small part of R’s parse interface is declared in header file R_ext/Parse.h?.

An example of the usage can be found in the (example) Windows package windlgs included
in the R source tree. The essential part is

20 This is only guaranteed to show the current interface: it is liable to change.

Chapter 5: System and foreign language interfaces 165

#include <R.h>
#include <Rinternals.h>
#include <R_ext/Parse.h>

SEXP menu_ttest3()

{
char cmd[256];
SEXP cmdSexp, cmdexpr, ans = R_NilValue;
ParseStatus status;
if(done == 1) {
cmdSexp = PROTECT(Rf_allocVector (STRSXP, 1));
SET_STRING_ELT (cmdSexp, O, Rf_mkChar(cmd));
cmdexpr = PROTECT(R_ParseVector(cmdSexp, -1, &status, R_NilValue));
if (status !'= PARSE_OK) {
UNPROTECT (2) ;
Rf_error("invalid call %s", cmd);
}
/* Loop is needed here as EXPSEXP will be of length > 1 */
for(int i = 0; i < Rf_length(cmdexpr); i++)
ans = Rf_eval (VECTOR_ELT(cmdexpr, i), R_GlobalEnv);
UNPROTECT (2) ;
}
return ans;
}

Note that a single line of text may give rise to more than one R expression.

R_ParseVector is essentially the code used to implement parse(text=) at R level. The first
argument is a character vector (corresponding to text) and the second the maximal number of
expressions to parse (corresponding to n). The third argument is a pointer to a variable of an
enumeration type, and it is normal (as parse does) to regard all values other than PARSE_OK
as an error. Other values which might be returned are PARSE_INCOMPLETE (an incomplete
expression was found) and PARSE_ERROR (a syntax error), in both cases the value returned being
R_NilValue. The fourth argument is a length one character vector to be used as a filename in
error messages, a srcfile object or the R NULL object (as in the example above). If a srcfile
object was used, a srcref attribute would be attached to the result, containing a list of srcref
objects of the same length as the expression, to allow it to be echoed with its original formatting.

Two higher-level alternatives are R_ParseString and R_ParseEvalString:

SEXP R_ParseString (const char *str) [Function]

SEXP R_ParseEvalString (const char *str, SEXP env) [Function]
R_ParseString Parses the code in str and returns the resulting expression. An error is
signaled if parsing str produces more than one R expression. R_ParseEvalString first parses
str, then evaluates the expression in the environment env, and returns the result.

An example from src/main/objects.c

call = R_ParseString("base: :name0fClass(X)");

5.12.1 Accessing source references

The source references added by the parser are recorded by R’s evaluator as it evaluates code.
Two functions make these available to debuggers running C code:

SEXP R_GetCurrentSrcref (int skip);

Chapter 5: System and foreign language interfaces 166

This function checks the current evaluation stack for entries that contain source reference
information. There are two modes of operation. If skip == NA_INTEGER, the R_Srcref entry
is checked followed by entries in the call stack, until a srcref is found. Otherwise, the skip
argument tells how many calls to skip (counting from the top of the stack) before returning the
SEXP of the call’s srcref object or NULL if that call did not have one. If skip < 0, abs(skip)
locations are counted up from the bottom of the stack. If too few or no source references are
found, NULL is returned.

SEXP R_GetSrcFilename (SEXP srcref);

This function extracts the filename from the source reference for display, returning a length 1
character vector containing the filename. If no name is found, "" is returned.

5.13 External pointers and weak references

The SEXPTYPEs EXTPTRSXP and WEAKREFSXP can be encountered at R level, but are created in C
code.

External pointer SEXPs are intended to handle references to C structures such as ‘handles’, and
are used for this purpose in package RODBC (https://CRAN.R-project.org/package=RODBC)
for example. They are unusual in their copying semantics in that when an R object is copied, the
external pointer object is not duplicated. (For this reason external pointers should only be used
as part of an object with normal semantics, for example an attribute or an element of a list.)

An external pointer is created by
SEXP R_MakeExternalPtr(void *p, SEXP tag, SEXP prot);

where p is the pointer (and hence this cannot portably be a function pointer), and tag and prot
are references to ordinary R objects which will remain in existence (be protected from garbage
collection) for the lifetime of the external pointer object. A useful convention is to use the tag
field for some form of type identification and the prot field for protecting the memory that the
external pointer represents, if that memory is allocated from the R heap. Both tag and prot
can be R_NilValue, and often are.

An alternative way to create an external pointer from a function pointer is

typedef void * (*R_DL_FUNC) ();
SEXP R_MakeExternalPtrFn(R_DL_FUNC p, SEXP tag, SEXP prot);

The elements of an external pointer can be accessed and set via

void *R_ExternalPtrAddr (SEXP s);

DL_FUNC R_ExternalPtrAddrFn(SEXP s);

SEXP R_ExternalPtrTag(SEXP s);

SEXP R_ExternalPtrProtected(SEXP s);

void R_ClearExternalPtr (SEXP s);

void R_SetExternalPtrAddr (SEXP s, void *p);
void R_SetExternalPtrTag(SEXP s, SEXP tag);
void R_SetExternalPtrProtected(SEXP s, SEXP p);

Clearing a pointer sets its value to the C NULL pointer.

An external pointer object can have a finalizer, a piece of code to be run when the object is
garbage collected. This can be R code or C code, and the various interfaces are, respectively.

void R_RegisterFinalizer (SEXP s, SEXP fun);
void R_RegisterFinalizerEx(SEXP s, SEXP fun, Rboolean onexit);

typedef void (*R_CFinalizer_t) (SEXP);
void R_RegisterCFinalizer(SEXP s, R_CFinalizer_t fun);
void R_RegisterCFinalizerEx(SEXP s, R_CFinalizer_t fun, Rboolean onexit);

https://CRAN.R-project.org/package=RODBC

Chapter 5: System and foreign language interfaces 167

The R function indicated by fun should be a function of a single argument, the object to be
finalized. R does not perform a garbage collection when shutting down, and the onexit argument
of the extended forms can be used to ask that the finalizer be run during a normal shutdown of
the R session. It is suggested that it is good practice to clear the pointer on finalization.

The only R level function for interacting with external pointers is reg.finalizer which can
be used to set a finalizer.

It is probably not a good idea to allow an external pointer to be saved and then reloaded,
but if this happens the pointer will be set to the C NULL pointer.

Finalizers can be run at many places in the code base and much of it, including the R
interpreter, is not re-entrant. So great care is needed in choosing the code to be run in a finalizer.
Finalizers are marked to be run at garbage collection but only run at a somewhat safe point
thereafter.

Weak references are used to allow the programmer to maintain information on entities without
preventing the garbage collection of the entities once they become unreachable.

A weak reference contains a key and a value. The value is reachable if it is either reachable
directly or via weak references with reachable keys. Once a value is determined to be unreachable
during garbage collection, the key and value are set to R_NilValue and the finalizer will be run
later in the garbage collection.

Weak reference objects are created by one of

SEXP R_MakeWeakRef (SEXP key, SEXP val, SEXP fin, Rboolean onexit);
SEXP R_MakeWeakRefC(SEXP key, SEXP val, R_CFinalizer_t fin,
Rboolean onexit);

where the R or C finalizer are specified in exactly the same way as for an external pointer object
(whose finalization interface is implemented via weak references).

The parts can be accessed via

SEXP R_WeakRefKey(SEXP w);
SEXP R_WeakRefValue (SEXP w) ;
void R_RunWeakRefFinalizer (SEXP w);

A toy example of the use of weak references can be found at https://homepage.stat.
uiowa.edu/"luke/R/references/weakfinex.html, but that is used to add finalizers to exter-
nal pointers which can now be done more directly. At the time of writing no CRAN or Bioconductor
package used weak references.

5.13.1 An example

Package RODBC (https://CRAN.R-project.org/package=RODBC) uses external pointers to
maintain its channels, connections to databases. There can be several connections open at once,
and the status information for each is stored in a C structure (pointed to by thisHandle in the
code extract below) that is returned via an external pointer as part of the RODBC ‘channel’ (as
the "handle_ptr" attribute). The external pointer is created by

SEXP ans, ptr;

ans = PROTECT(Rf_allocVector (INTSXP, 1));

ptr = R_MakeExternalPtr(thisHandle, Rf_install("RODBC_channel"), R_NilValue);
PROTECT (ptr) ;

R_RegisterCFinalizerEx(ptr, chanFinalizer, TRUE);

/* return the channel no */

INTEGER (ans) [0] = nChannels;

/* and the connection string as an attribute */
Rf_setAttrib(ans, Rf_install("connection.string"), constr);

https://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
https://homepage.stat.uiowa.edu/~luke/R/references/weakfinex.html
https://CRAN.R-project.org/package=RODBC

Chapter 5: System and foreign language interfaces 168

Rf_setAttrib(ans, Rf_install("handle_ptr"), ptr);
UNPROTECT (3) ;
return ans;

Note the symbol given to identify the usage of the external pointer, and the use of the finalizer.
Since the final argument when registering the finalizer is TRUE, the finalizer will be run at the
end of the R session (unless it crashes). This is used to close and clean up the connection to the
database. The finalizer code is simply

static void chanFinalizer (SEXP ptr)

{
if (!R_ExternalPtrAddr(ptr)) return;
inRODBCClose (R_ExternalPtrAddr (ptr));
R_ClearExternalPtr(ptr); /* not really needed */
}

Clearing the pointer and checking for a NULL pointer avoids any possibility of attempting to close
an already-closed channel.

R’s connections provide another example of using external pointers, in that case purely to be
able to use a finalizer to close and destroy the connection if it is no longer is use.

5.14 Vector accessor functions

The vector accessors like REAL, INTEGER, LOGICAL, RAW, COMPLEX, and VECTOR_ELT are functions
when used in R extensions. (For efficiency they may be macros or inline functions when used in
the R source code, apart from SET_STRING_ELT and SET_VECTOR_ELT which are always functions.
When used outside the R source code all vector accessors are functions.) There are also read-only
versions that return a const data pointer. For example, the return type of REAL_RO is const
double *. These accessor functions check that they are being used on an appropriate type of
SEXP. For VECSXP and STRSXP objects only read-only pointers are available as modifying their
data directly would violate assumptions the memory manager depends on. DATAPTR_RO returns
a generic read-only data pointer for any vector object.

Formerly it was possible for packages to obtain internal versions of some accessors by defin-
ing ‘USE_RINTERNALS’ before including Rinternals.h. This is no longer the case. Defining
‘USE_RINTERNALS’ now has no effect.

Atomic vector elements can also be accessed and set using element-wise operations like
INTEGER_ELT and SET_INTEGER_ELT. For objects with a compact representation using these
may avoid fully materializing the object. In contrast, obtaining a data pointer will have to fully
materialize the object.

5.15 Character encoding issues

CHARSXPs can be marked as coming from a known encoding (Latin-1 or UTF-8). This is mainly
intended for human-readable output, and most packages can just treat such CHARSXPs as a whole.
However, if they need to be interpreted as characters or output at C level then it would normally
be correct to ensure that they are converted to the encoding of the current locale: this can
be done by accessing the data in the CHARSXP by Rf_translateChar rather than by CHAR. If
re-encoding is needed this allocates memory with R_alloc which thus persists to the end of the
.Call/.External call unless vmaxset is used (see Section 6.1.1 [Transient storage allocation],
page 172).

There is a similar function Rf _translateCharUTF8 which converts to UTF-8: this has the
advantage that a faithful translation is almost always possible (whereas only a few languages can
be represented in the encoding of the current locale unless that is UTF-8).

Chapter 5: System and foreign language interfaces 169

Both Rf _translateChar and Rf_translateCharUTF8 will translate any input, using escapes
such as ‘<A9>’ and ‘<U+0093>’ to represent untranslatable parts of the input.
There is a public interface to the encoding marked on CHARSXPs via
typedef enum {CE_NATIVE, CE_UTF8, CE_LATIN1, CE_BYTES, CE_SYMBOL, CE_ANY} cetype_t;
cetype_t Rf_getCharCE(SEXP);
SEXP Rf_mkCharCE(const char *, cetype_t);
Only CE_UTF8 and CE_LATIN1 are marked on CHARSXPs (and so Rf _getCharCE will only return
one of the first three), and these should only be used on non-ASCII strings. Value CE_BYTES is
used to make CHARSXPs which should be regarded as a set of bytes and not translated. Value
CE_SYMBOL is used internally to indicate Adobe Symbol encoding. Value CE_ANY is used to
indicate a character string that will not need re-encoding — this is used for character strings
known to be in ASCII, and can also be used as an input parameter where the intention is that
the string is treated as a series of bytes. (See the comments under Rf _mkChar about the length
of input allowed.)

Function
Rboolean Rf_charIsASCII(SEXP);
can be used to detect whether a given CHARSXP represents an ASCII string. The implementation
is equivalent to checking individual characters, but may be faster.
Function
Rboolean Rf_charIsUTFS8(SEXP);
can be used to detect whether the internal representation of a given CHARSXP accessed via CHAR
is UTF-8 (including ASCII). This function is rarely needed and specifically is not needed with
Rf_translateCharUTF8, because such check is already included. However, when needed, it
is better to use it in preference of Rf_getCharCE, as it is safer against future changes in the
semantics of encoding marks and covers strings internally represented in the native encoding.
Note that Rf_charIsUTF8() is not equivalent to getCharCE() == CE_UTFS.
Similarly, function
Rboolean Rf_charIsLatinl (SEXP);
can be used to detect whether the internal representation of a given CHARSXP accessed via CHAR
is latinl (including ASCII). It is not equivalent to Rf_getCharCE() == CE_LATINI.
Function
const char *Rf_reEnc(const char *x, cetype_t ce_in, cetype_t ce_out,
int subst);

can be used to re-encode character strings: like Rf _translateChar it returns a string allocated by
R_alloc. This can translate from CE_SYMBOL to CE_UTF8, but not conversely. Argument subst
controls what to do with untranslatable characters or invalid input: this is done byte-by-byte
with 1 indicates to output hex of the form <a0>, and 2 to replace by ., with any other value
causing the byte to produce no output.

There is also
SEXP Rf_mkCharLenCE(const char *, int, cetype_t);

to create marked character strings of a given length.

5.16 Writing compact-representation-friendly code

A simple way to iterate in C over the elements of an atomic vector is to obtain a data pointer
and index into that pointer with standard C indexing. However, if the object has a compact
representation, then obtaining the data pointer will force the object to be fully materialized. An
alternative is to use one of the following functions to query whether a data pointer is available.

Chapter 5: System and foreign language interfaces 170

const int * LOGICAL_OR_NULL (SEXP x) Function]
const int * INTEGER_OR_NULL (SEXP x) Function
const double * REAL_OR_NULL (SEXP x) Function

const Rbyte * RAW_OR_NULL (SEXP x) Function

const void * DATAPTR_OR_NULL (SEXP x) Function
These functions will return a data pointer if one is available. For vectors with a compact
representation these functions will return NULL.

[

[]

[]
const Rcomplex * COMPLEX_OR_NULL (SEXP x) [Function]

[]

[]

If a data pointer is not available, then code can access elements one at a time with functions
like REAL_ELT. This is often sufficient, but in some cases can be inefficient. An alternative is to
request data for contiguous blocks of elements. For a good choice of block size this can be nearly
as efficient as direct pointer access.

R_xlen_t INTEGER_GET_REGION (SEXP sx, R_xlen_t i, R_xlen_t n, [Function]
int *buf)

R_xlen_t LOGICAL_GET_REGION (SEXP sx, R_xlen_t i, R_xlen_t n, [Function]
int *buf)

R_xlen_t REAL_GET_REGION (SEXP sx, R_xlen_t i, R_xlen_t n, [Function]
double *buf)

R_xlen_t COMPLEX_GET_REGION (SEXP sx, R_xlen_t i, R_xlen_t n, [Function]
Rcomplex *buf)

R_xlen_t RAW_GET_REGION (SEXP sx, R_xlen_t i, R_xlen_t n, [Function]

Rbyte *buf)
These functions copy a contiguous set of up to n elements starting with element i into a buffer
buf. The return value is the actual number of elements copied, which may be less than n.

Macros in R_ext/Itermacros.h may help in implementing an iteration strategy.

Some functions useful in implementing new alternate representation classes, beyond those
defined in R_ext/Altrep.h, include ALTREP, ALTREP_CLASS, R_altrep_datal, R_set_altrep_
datal, R_altrep_data2, and R_set_altrep_data2.

For some objects it may be possible to very efficiently determine whether the object is sorted
or contains no NA values. These functions can be used to query this information:

int LOGICAL_NO_NA (SEXP x) [Function]
int INTEGER_NO_NA (SEXP x) [Function]
int REAL_NO_NA (SEXP x) [Function]
int STRING_NO_NA (SEXP x) [Function]

A TRUE result means it is known that there are no NA values. A FALSE result means it is not
known whether there are any NA values.

int INTEGER_IS_SORTED (SEXP x) [Function]
int REAL_IS_SORTED (SEXP x) [Function)]
int STRING_IS_SORTED (SEXP x) [Function)]

These functions return one of SORTED_DECR, SORTED_INCR, or UNKNOWN_SORTEDNESS.

171

6 The R API: entry points for C code

There are a large number of entry points in the R executable/DLL that can be called from C
code (and a few that can be called from Fortran code). Only those documented here are stable
enough that they will only be changed with considerable notice.

The recommended procedure to use these is to include the header file R.h in your C code by
#include <R.h>

This will include several other header files from the directory R_INCLUDE_DIR/R_ext, and there
are other header files there that can be included too, but many of the features they contain
should be regarded as undocumented and unstable.

Most of these header files, including all those included by R.h, can be used from C++ code.
(However, they cannot safely be included in a extern "C" { } block as they may include C++
headers when included from C++ code—and whether this succeeds is system-specific).

Note: Because R re-maps many of its external names to avoid clashes with system
or user code, it is essential to include the appropriate header files when using these
entry points.

This remapping can cause problems', and can be eliminated by defining R_NO_REMAP (before
including any R headers) and prepending ‘Rf _’ to all the function names used from Rinternals.h
and R_ext/Error.h. These problems can usually be avoided by including other headers (such
as system headers and those for external software used by the package) before any R headers.
(Headers from other packages may include R headers directly or wvia inclusion from further
packages, and may define R_NO_REMAP with or without including Rinternals.h.)

As from R 4.5.0, R_NO_REMAP is always defined when the R headers are included from C++
code.

If you decide to define R_NO_REMAP in your code, do use something like

#ifndef R_NO_REMAP
define R_NO_REMAP
#endif

to avoid distracting compiler warnings.

Some of these entry points are declared in header Rmath.h, most of which are remapped
there. That remapping can be eliminated by defining R_NO_REMAP_RMATH (before including any
R headers) and prepending ‘Rf_’ to the function names used from that header except

exp_rand norm_rand unif_rand signrank_free wilcox_free

We can classify the entry points as

API Entry points which are documented in this manual and declared in an installed
header file. These can be used in distributed packages and ideally will only be
changed after deprecation. See [API index]|, page 221.

public Entry points declared in an installed header file that are exported on all R platforms
but are not documented and subject to change without notice. Do not use these in
distributed code. Their declarations will eventually be moved out of installed header
files.

private Entry points that are used when building R and exported on all R platforms but are
not declared in the installed header files. Do not use these in distributed code.

hidden Entry points that are where possible (Windows and some modern Unix-alike
compilers/loaders when using R as a shared library) not exported.

I Known problems have been defining LENGTH, error, length, match, vector and warning: whether these
matter depends on the OS and toolchain, with many problem reports involving Apple or LLVM clang++.

Chapter 6: The R APIL: entry points for C code 172

experimental
Entry points declared in an installed header file that are part of an experimental API,
such as R_ext/Altrep.h. These are subject to change, so package authors wishing
to use these should be prepared to adapt. See [Experimental API index|, page 226.

embedding Entry points intended primarily for embedding and creating new front-ends. It is
not clear that this needs to be a separate category but it may be useful to keep it
separate for now. See [Embedding API index], page 227.

If you would like to use an entry point or variable that is not identified as part of the API in
this document, or is currently hidden, you can make a request for it to be made available. Entry
points or variables not identified as in the API may be changed or removed with no notice as
part of efforts to improve aspects of R.

Work in progress: Currently Entry points in the API are identified in the source for this
document with @apifun, @eapifun, and @embfun entries. Similarly, @apivar, @eapivar, and
@embvar identify variables, and @apihdr, @eapihdr, and @embhdr identify headers in the API.
@forfun identifies entry points to be called as Fortran subroutines. This could be used for
programmatic extraction, but the specific format is work in progress and even the way this
document is produced is subject to change.

6.1 Memory allocation

There are two types of memory allocation available to the C programmer, one in which R manages
the clean-up and the other in which users have full control (and responsibility).

These functions are declared in header R_ext/RS.h which is included by R.h.

6.1.1 Transient storage allocation

Here R will reclaim the memory at the end of the call to .C, .Call or .External. Use
char *R_alloc(size_t n, int size)

which allocates n units of size bytes each. A typical usage (from package stats) is
x = (int *) R_alloc(nrows(merge)+2, sizeof(int));

(size_t is defined in stddef.h which the header defining R_alloc includes.)

There is a similar call, S_alloc (named for compatibility with older versions of S) which
zeroes the memory allocated,

char *S_alloc(long n, int size)
and
char *S_realloc(char *p, long new, long old, int size)

which (for new > 01d) changes the allocation size from old to new units, and zeroes the additional
units. NB: these calls are best avoided as long is insufficient for large memory allocations on
64-bit Windows (where it is limited to 2731-1 bytes).

This memory is taken from the heap, and released at the end of the .C, .Call or .External
call. Users can also manage it, by noting the current position with a call to vmaxget and
subsequently clearing memory allocated by a call to vmaxset. An example might be

void *vmax = vmaxget ()
// a loop involving the use of R_alloc at each iteration
vmaxset (vmax)

This is only recommended for experts.

Note that this memory will be freed on error or user interrupt (if allowed: see Section 6.13
[Allowing interrupts|, page 192).

Chapter 6: The R APIL: entry points for C code 173

The memory returned is only guaranteed to be aligned as required for double pointers: take
precautions if casting to a pointer which needs more. There is also

long double *R_allocLD(size_t n)

which is guaranteed to have the 16-byte alignment needed for long double pointers on some
platforms.

These functions should only be used in code called by .C etc, never from front-ends. They
are not, thread-safe.

6.1.2 User-controlled memory

The other form of memory allocation is an interface to malloc, the interface providing R error
signaling. This memory lasts until freed by the user and is additional to the memory allocated
for the R workspace.

The interface macros are

typex R_Calloc(size_t n, type)
type* R_Realloc(any *p, size_t n, type)
void R_Free(any *p)

providing analogues of calloc, realloc and free. If there is an error during allocation it is
handled by R, so if these return the memory has been successfully allocated or freed. R_Free
will set the pointer p to NULL.

Users should arrange to R_Free this memory when no longer needed, including on error or
user interrupt. This can often be done most conveniently from an on.exit action in the calling
R function — see pwilcox for an example.

Do not assume that memory allocated by R_Calloc/R_Realloc comes from the same pool as
used by malloc:? in particular do not use free or strdup with it.

Memory obtained by these macros should be aligned in the same way as malloc, that is
‘suitably aligned for any kind of variable’.

Historically the macros Calloc, Free and Realloc were used but have been removed in \R
4.5.0.

R_Calloc, R_Realloc, and R_Free are currently implemented as macros expanding to calls
to R_chk_calloc, R_chk_realloc, and R_chk_free, respectively. These should not be called
directly as they may be removed in the future.

char * CallocCharBuf(size_t n)
void * Memcpy(q, p, n)
void * Memzero(p, n)

CallocCharBuf (n) is shorthand for R_Calloc(n+1, char) to allow for the nul terminator.
Memcpy and Memzero take n items from array p and copy them to array q or zero them respectively.

6.2 Error signaling

The basic error signaling routines are the equivalents of stop and warning in R code, and use
the same interface.

void Rf_error(const char * format, ...);

void Rf_warning(const char * format, ...);

void Rf_errorcall (SEXP call, const char * format, ...);

void Rf_warningcall (SEXP call, const char * format, ...);

void Rf_warningcall_immediate(SEXP call, const char * format, ...);

2 That was not the case on Windows prior to R 4.2.0.

Chapter 6: The R APIL: entry points for C code 174

These have the same call sequences as calls to printf, but in the simplest case can be called
with a single character string argument giving the error message. (Don’t do this if the string
contains ‘%" or might otherwise be interpreted as a format.)

These are defined in header R_ext/Error.h included by R.h. NB: when R_NO_REMAP is
defined (as is done for C++ code), Rf _error etc must be used.

Header R_ext/Error.h defines a macro NORET intended to be used only from C code (C++
code can use the [[noreturn]] attribute). This covers various ways to signal to the compiler
that the function never returns. Because the usages of those ways differ by C standard, it should
always be used at the beginning of a function declaration, including before static and attributes
such as attribute_hidden.

6.2.1 Error signaling from Fortran
There are two interface function provided to call Rf _error and Rf_warning from Fortran code,
in each case with a simple character string argument. They are defined as

subroutine rexit(message)
subroutine rwarn(message)

Messages of more than 255 characters are truncated, with a warning.

6.3 Random number generation

The interface to R’s internal random number generation routines is

double unif_rand();

double norm_rand();

double exp_rand();

double R_unif_index(double);
giving one uniform, normal or exponential pseudo-random variate. However, before these are
used, the user must call

GetRNGstate();
and after all the required variates have been generated, call

PutRNGstate();
These essentially read in (or create) .Random.seed and write it out after use.

These are defined in header R_ext/Random.h. These functions are never remapped.

The random number generator is private to R; there is no way to select the kind of RNG nor
set the seed except by evaluating calls to the R functions which do so.

The C code behind R’s rxxx functions can be accessed by including the header file Rmath.h;
See Section 6.7.1 [Distribution functions], page 181. Those calls should also be preceded and
followed by calls to GetRNGstate and PutRNGstate.

6.3.1 Random-number generation from Fortran

It was explained earlier that Fortran random-number generators should not be used in R packages,
not least as packages cannot safely initialize them. Rather a package should call R’s built-in
generators: one way to do so is to use C wrappers like

#include <R_ext/RS.h>
#include <R_ext/Random.h>

void F77_SUB(getRNGseed) (void) {
GetRNGstate();

}

void F77_SUB(putRNGseed) (void) {

Chapter 6: The R APIL: entry points for C code 175

PutRNGstate();

}

double F77_SUB(unifRand) (void) {
return(unif_rand());

¥

called from Fortran code like

double precision X
call getRNGseed()
X = unifRand()

call putRNGseed()
Alternatively one could use Fortran 2003’s iso_c_binding module by something like (fixed-
form Fortran 90 code):

module rngfuncs
use iso_c_binding
interface
double precision
* function unifRand() bind(C, name = "unif_rand")
end function unifRand

subroutine getRNGseed() bind(C, name = "GetRNGstate")

end subroutine getRNGseed

subroutine putRNGseed() bind(C, name = "PutRNGstate")
end subroutine putRNGseed
end interface

end module rngfuncs

subroutine testit

use rngfuncs

double precision X
call getRNGseed()

X = unifRand ()

print *, X

call putRNGSeed()

end subroutine testit

6.4 Missing and IEEE special values

A set of functions is provided to test for NA, Inf, -Inf and NaN. These functions are accessed
V16 MAacros:

ISNA(x) True for R’s NA only

ISNAN (x) True for R’s NA and IEEE NaN

R_FINITE(x) False for Inf, -Inf, NA, NaN
and via function R_IsNaN which is true for NaN but not NA.

Do use R_FINITE rather than isfinite or finite; the latter is often mendacious and
isfinite is only available on a some platforms, on which R_FINITE is a macro expanding to
isfinite.

Currently in C code ISNAN is a macro calling isnan. (Since this gives problems on some C++
systems, if the R headers are called from C++ code a function call is used.)

Chapter 6: The R APIL: entry points for C code 176

You can check for Inf or -Inf by testing equality to R_PosInf or R_NegInf, and set (but
not test) an NA as NA_REAL.

All of the above apply to double variables only. For integer variables there is a variable
accessed by the macro NA_INTEGER which can used to set or test for missingness.

These are defined in header R_ext/Arith.h included by R.h.

6.5 Printing

The most useful function for printing from a C routine compiled into R is Rprintf. This is used
in exactly the same way as printf, but is guaranteed to write to R’s output (which might be a
GUI console rather than a file, and can be re-directed by sink). It is wise to write complete lines
(including the "\n") before returning to R. It is defined in R_ext/Print.h.

The function REprintf is similar but writes on the error stream (stderr) which may or may
not be different from the standard output stream.

Functions Rvprintf and REvprintf are analogues using the vprintf interface. Because
that is a C99% interface, they are only defined by R_ext/Print.h in C++ code if the macro
R_USE_C99_IN_CXX is defined before it is included or (as from R 4.0.0) a C++11 compiler is used.

Another circumstance when it may be important to use these functions is when using parallel
computation on a cluster of computational nodes, as their output will be re-directed /logged
appropriately.

6.5.1 Printing from Fortran

On many systems Fortran write and print statements can be used, but the output may not
interleave well with that of C, and may be invisible on GUI interfaces. They are not portable
and best avoided.

Some subroutines are provided to ease the output of information from Fortran code.

subroutine dblepr(label, nchar, data, ndata)
subroutine realpr(label, nchar, data, ndata)
subroutine intpr (label, nchar, data, ndata)

and from R 4.0.0,

subroutine labelpr(label, nchar)

subroutine dblepril(label, nchar, var)
subroutine realprl(label, nchar, var)
subroutine intprl (label, nchar, var)

Here label is a character label of up to 255 characters, nchar is its length (which can be -1
if the whole label is to be used), data is an array of length at least ndata of the appropriate
type (double precision, real and integer respectively) and var is a (scalar) variable. These
routines print the label on one line and then print data or var as if it were an R vector on
subsequent line(s). Note that some compilers will give an error or warning unless data is an
array: others will accept a scalar when ndata has value one or zero. NB: There is no check on
the type of data or var, so using real (including a real constant) instead of double precision
will give incorrect answers.

intpr works with zero ndata so can be used to print a label in earlier versions of R.

3 also part of C++11.

Chapter 6: The R APIL: entry points for C code 177

6.6 Calling C from Fortran and vice versa

Naming conventions for symbols generated by Fortran differ by platform: it is not safe to assume
that Fortran names appear to C with a trailing underscore. To help cover up the platform-specific
differences there is a set of macros* that should be used.

F77_SUB(name)
to define a function in C to be called from Fortran

F77_NAME (name)
to declare a Fortran routine in C before use

F77_CALL (name)
to call a Fortran routine from C

On current platforms these are the same, but it is unwise to rely on this. Note that names
containing underscores were not legal in Fortran 77, and are not portably handled by the above
macros. (Also, all Fortran names for use by R are lower case, but this is not enforced by the
macros.)

For example, suppose we want to call R’s normal random numbers from Fortran. We need a
C wrapper along the lines of

#include <R.h>

void F77_SUB(rndstart) (void) { GetRNGstate(); }
void F77_SUB(rndend) (void) { PutRNGstate(); }
double F77_SUB(normrnd) (void) { return norm_rand(); }

to be called from Fortran as in

subroutine testit()

double precision normrnd, x
call rndstart()

x = normrnd ()

call dblepr("X was", 5, x, 1)
call rndend()

end

Note that this is not guaranteed to be portable, for the return conventions might not be compatible
between the C and Fortran compilers used. (Passing values via arguments is safer.)

The standard packages, for example stats, are a rich source of further examples.

Where supported, link time optimization provides a reliable way to check the consistency of
calls to C from Fortran or vice versa. See Section 4.5 [Using Link-time Optimization], page 124.
One place where this occurs is the registration of .Fortran calls in C code (see Section 5.4
[Registering native routines|, page 129). For example

init.c:10:13: warning: type of ’vsom_’ does not match original
declaration [-Wlto-type-mismatch]
extern void F77_NAME(vsom) (void *, void *, void *, void *,
void *, void *, void *, void *, void *);
vsom.£90:20:33: note: type mismatch in parameter 9
subroutine vsom(neurons,dt,dtrows,dtcols,xdim,ydim,alpha,train)
vsom.£90:20:33: note: ’vsom’ was previously declared here

shows that a subroutine has been registered with 9 arguments (as that is what the .Fortran
call used) but only has 8.

4 The “F77_’ in the names is historical and dates back to usage in S.

Chapter 6: The R APIL: entry points for C code 178

6.6.1 Fortran character strings

Passing character strings from C to Fortran or wvice versa is not portable, but can be done
with care. The internal representations are different: a character array in C (or C++) is NUL-
terminated so its length can be computed by strlen. Fortran character arrays are typically
stored as an array of bytes and a length. This matters when passing strings from C to Fortran
or vice versa: in many cases one has been able to get away with passing the string but not the
length. However, in 2019 this changed for gfortran, starting with version 9 but backported to
versions 7 and 8. Several months later, gfortran 9.2 introduced an option

-ftail-call-workaround
and made it the current default but said it might be withdrawn in future.

Suppose we want a function to report a message from Fortran to R’s console (one could use
labelpr, or intpr with dummy data, but this might be the basis of a custom reporting function).
Suppose the equivalent in Fortran would be

subroutine rmsg(msg)
character*(*) msg
print *.msg
end
in file rmsg.f. Using gfortran 9.2 and later we can extract the C view by
gfortran -c —-fc-prototypes-external rmsg.f
which gives
void rmsg_ (char *msg, size_t msg_len);
(where size_t applies to version 8 and later). We could re-write that portably in C as
#ifndef USE_FC_LEN_T
define USE_FC_LEN_T

#endif
#include <Rconfig.h> // included by R.h, so define USE_FC_LEN_T early

void F77_NAME(rmsg) (char *msg, FC_LEN_T msg_len)

{
char cmsglmsg_len+1];
strncpy(cmsg, msg, msg_len);
cmsgmsg_len] = ’\0’; // nul-terminate the string, to be sure
// do something with ’cmsg’
}

in code depending on R(>= 3.6.2). For earlier versions of R we could just assume that msg is
NUL-terminated (not guaranteed, but people have been getting away with it for many years), so
the complete C side might be

#ifndef USE_FC_LEN_T
define USE_FC_LEN_T
#endif

#include <Rconfig.h>

#ifdef FC_LEN_T
void F77_NAME(rmsg) (char *msg, FC_LEN_T msg_len)
{

char cmsglmsg_len+1];

strncpy(cmsg, msg, msg_len);

cmsg[msg_len] = °\0’;

// do something with ’cmsg’

Chapter 6: The R APIL: entry points for C code 179

}
#else
void F77_NAME(rmsg) (char *msg)
{

// do something with ’msg’
}
#endif

(USE_FC_LEN_T is the default as from R 4.3.0.)

An alternative is to use Fortran 2003 features to set up the Fortran routine to pass a
C-compatible character string. We could use something like
module cfuncs
use iso_c_binding, only: c_char, c_null_char
interface
subroutine cmsg(msg) bind(C, name = ’cmsg’)
use iso_c_binding, only: c_char
character(kind = c_char):: msg(*)
end subroutine cmsg
end interface
end module

subroutine rmsg(msg)
use cfuncs
character(*) msg
call cmsg(msg//c_null_char) ! need to concatenate a nul terminator
end subroutine rmsg
where the C side is simply

void cmsg(const char *msg)
{

// do something with nul-terminated string ’msg’

}

If you use bind to a C function as here, the only way to check that the bound definition is correct
is to compile the package with LTO (which requires compatible C and Fortran compilers, usually
gcc and gfortran).

Passing a variable-length string from C to Fortran is trickier, but https://www.intel.
com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/
bind-c.html provides a recipe. However, all the uses in BLAS and LAPACK are of a single
character, and for these we can write a wrapper in Fortran along the lines of

subroutine c_dgemm(transa, transb, m, n, k, alpha,

+ a, lda, b, 1ldb, beta, c, 1ldc)

+ bind(C, name = ’Cdgemm’)
use iso_c_binding, only : c_char, c_int, c_double
character(c_char), intent(in) :: transa, transb
integer(c_int), intent(in) :: m, n, k, lda, 1ldb, ldc
real(c_double), intent(in) :: alpha, beta, a(lda, *), b(ldb, *)
real(c_double), intent(out) :: c(ldc, *)
call dgemm(transa, transb, m, n, k, alpha,

+ a, lda, b, 1db, beta, c, ldc)

end subroutine c_dgemm
which is then called from C with declaration

void

https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/bind-c.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/bind-c.html
https://www.intel.com/content/www/us/en/docs/fortran-compiler/developer-guide-reference/2023-0/bind-c.html

Chapter 6: The R APIL: entry points for C code 180

Cdgemm(const char *transa, const char *transb, const int *m,
const int *n, const int *k, const double *alpha,
const double *a, const int *1lda, const double *b, const int *1db,
const double *beta, double *c, const int *1dc);

Alternatively, do as R does as from version 3.6.2 and pass the character length(s) from C to
Fortran. A portable way to do this is

// before any R headers, or define in PKG_CPPFLAGS
#ifndef USE_FC_LEN_T

define USE_FC_LEN_T

#endif

#include <Rconfig.h>

#include <R_ext/BLAS.h>

#ifndef FCONE

define FCONE

#endif

F77_CALL(dgemm) ("N", "T", &nrx, &ncy, &ncx, &one, x,
&nrx, y, &nry, &zero, z, &nrx FCONE FCONE) ;

(Note there is no comma before or between the FCONE invocations.) It is strongly recommended
that packages which call from C/C++ BLAS/LAPACK routines with character arguments adopt
this approach: packages not using it will fail to install as from R 4.3.0.

6.6.2 Fortran LOGICAL

Passing Fortran LOGICAL variables to/from C/C++ is potentially compiler-dependent. Fortran
compilers have long used a 32-bit integer type so it is pretty portable to use int * on the C/C++
side. However, recent versions of gfortran via the option -fc-prototypes-external say the
C equivalent is int_least32_t *: ‘Link-Time Optimization’ will report int * as a mismatch. It
is possible to use iso_c_binding in Fortran 2003 to map LOGICAL variables to the C99 type
_Bool, but it is usually simpler to pass integers.

6.6.3 Passing functions

A number of packages call C functions passed as arguments to Fortran code along the lines of
subroutine fcn(m,n,x,fvec,iflag)
integer m,n,iflag
double precision x(n),fvec(m)
subroutine 1lmdif (fcn,
where the C declaration and call are
void fcn_lmdif (int #*m, int *n, double *par, double *fvec, int *iflag);
void F77_NAME(1mdif) (void (*fcn_lmdif) (int *m, int *n, double *par,
double *fvec, int *iflag),
F77_CALL(1lmdif) (&fcn_lmdif,

This works on most platforms but depends on the C and Fortran compilers agreeing on calling
conventions: this have been seen to fail. The most portable solution seems to be to convert the
Fortran code to C, perhaps using f2c.

Chapter 6: The R APIL: entry points for C code 181

6.7 Numerical analysis subroutines

R contains a large number of mathematical functions for its own use, for example numerical
linear algebra computations and special functions.

The header files R_ext/BLAS.h, R_ext/Lapack.h and R_ext/Linpack.h contain declarations
of the BLAS, LAPACK and LINPACK linear algebra functions included in R. These are expressed
as calls to Fortran subroutines, and they will also be usable from users’ Fortran code. Although not
part of the official API, this set of subroutines is unlikely to change (but might be supplemented).

The header file Rmath.h lists many other functions that are available and documented in the
following subsections. Many of these are C interfaces to the code behind R functions, so the R
function documentation may give further details.

If R_NO_REMAP_RMATH most of these will need to be prefixed by Rf_: see the header file for
which ones.

6.7.1 Distribution functions

The routines used to calculate densities, cumulative distribution functions and quantile functions
for the standard statistical distributions are available as entry points.

The arguments for the entry points follow the pattern of those for the normal distribution:

double dnorm(double x, double mu, double sigma, int give_log) ;

double pnorm(double x, double mu, double sigma, int lower_tail,
int give_log);

double gnorm(double p, double mu, double sigma, int lower_tail,
int log_p);

double rnorm(double mu, double sigma);

That is, the first argument gives the position for the density and CDF and probability for the
quantile function, followed by the distribution’s parameters. Argument lower_tail should be TRUE
(or 1) for normal use, but can be FALSE (or 0) if the probability of the upper tail is desired or
specified.

Finally, give_log should be non-zero if the result is required on log scale, and log_p should be
non-zero if p has been specified on log scale.

Note that you directly get the cumulative (or “integrated”) hazard function, H(t) = —log(1 —
F(t)), by using
- pdist(t, ..., /*lower_tail = */ FALSE, /* give_log = */ TRUE)
or shorter (and more cryptic) - pdist(t, ..., 0, 1).

The random-variate generation routine rnorm returns one normal variate. See Section 6.3
[Random numbers], page 174, for the protocol in using the random-variate routines.

Note that these argument sequences are (apart from the names and that rnorm has no n)
mainly the same as the corresponding R functions of the same name, so the documentation of the
R functions can be used. Note that the exponential and gamma distributions are parametrized
by scale rather than rate.

For reference, the following table gives the basic name (to be prefixed by ‘d’, ‘p’, ‘q’ or ‘r’

)

apart from the exceptions noted) and distribution-specific arguments for the complete set of
distributions.

beta beta a, b

non-central beta nbeta a, b, ncp
binomial binom n, p

Cauchy cauchy location, scale
chi-squared chisq df

non-central chi-squared nchisq df, ncp

Chapter 6: The R APIL: entry points for C code 182

exponential exp scale (and not rate)
F f nl, n2
non-central F nf nl, n2, ncp
gamma gamma shape, scale
geometric geom P
hypergeometric hyper NR, NB, n

logistic logis location, scale
lognormal lnorm logmean, logsd
negative binomial nbinom size, prob
normal norm mu, sigma
Poisson pois lambda
Student’s t t n

non-central t nt df, delta
Studentized range tukey (*) rr, cc, df
uniform unif a,b

Weibull weibull shape, scale
Wilcoxon rank sum wilcox m, n

Wilcoxon signed rank signrank n

Entries marked with an asterisk only have ‘p’ and ‘q’ functions available, and none of the
non-central distributions have ‘r’ functions.

(If remapping is suppressed, the Normal distribution names are Rf_dnorm4, Rf_pnorm5 and
Rf_qnorm5.)

Additionally, a multivariate RNG for the multinomial distribution is
void Rf_rmultinom(int n, double* prob, int K, int* rN)

where K = length(prob), m := probl[], Eﬁil m; = 1 and rN must point to a length-K integer
vector nins ... ngx where each entry n; =rN[j] is “filled” by a random binomial from Bin(n;;),
constrained to Zle n; = n.

After calls to dwilcox, pwilcox or qwilcox the function wilcox_free () should be called, and
similarly signrank_free() for the signed rank functions. Since wilcox_free() and signrank_
free() were only added to Rmath.h in R 4.2.0, their use requires something like

#include "Rmath.h"
#include "Rversion.h"

#if R_VERSION < R_Version(4, 2, 0)
extern void wilcox_free(void);
extern void signrank_free(void);
#endif

For the negative binomial distribution (‘nbinom’), in addition to the (size, prob) param-
etrization, the alternative (size, mu) parametrization is provided as well by functions
‘[dpgr]lnbinom_mu()’, see ?NegBinomial in R.

Functions dpois_raw(x, *) and dbinom_raw(x, *) are versions of the Poisson and binomial
probability mass functions which work continuously in x, whereas dbinom(x,*) and dpois(x,*)
only return non zero values for integer x.

double dbinom_raw(double x, double n, double p, double g, int give_log)
double dpois_raw (double x, double lambda, int give_log)

Note that dbinom_raw() returns both p and ¢ = 1 — p which may be advantageous when one
of them is close to 1.

Chapter 6: The R APIL: entry points for C code 183

6.7.2 Mathematical functions

double gammafn (double x) Function
double lgammafn (double x) Function
double digamma (double x) Function

[]
Finction
double trigamma (double x) [Function]
[]
[]
[]
[]

double tetragamma (double x) Function
double pentagamma (double x) Function
double psigamma (double x, double deriv) Function
void dpsifn (double x, int n, int kode, int m, double* ans, Function

int* nz, int* ierr)

The Gamma function, the natural logarithm of its absolute value and first four derivatives and
the n-th derivative of Psi, the digamma function, which is the derivative of 1gammafn. In other
words, digamma (x) is the same as psigamma(x,0), trigamma(x) == psigamma(x,1), etc. The
underlying workhorse, dpsifn(), is useful, e.g., when several derivatives of logI' =1gammafn
are desired. It computes and returns in ans [] the length-m sequence (—1)*! /T (k+1)xy®) (z)
for k =n...n+m — 1, where ¢¥¥)(x) is the k-th derivative of ¥(x), i.e., psigamma (x,k). For
more details, see the comments in src/nmath/polygamma.c.

double beta (double a, double b) [Function]

double lbeta (double a, double b) [Function]
The (complete) Beta function and its natural logarithm.

double choose (double n, double k) [Function]

double lchoose (double n, double k) [Function]

The number of combinations of k items chosen from n and the natural logarithm of its absolute
value, generalized to arbitrary real n. k is rounded to the nearest integer (with a warning if
needed).

double bessel_i (double x, double nu, double expo) [Function]
double bessel_j (double x, double nu) [Function]
double bessel_k (double x, double nu, double expo) [Function]
double bessel_y (double x, double nu) [Function]

Bessel functions of types I, J, K and Y with index nu. For bessel_i and bessel_k there
is the option to return exp(-x) I(x; nu) or exp(x) K(x; nu) if expo is 2. (Use expo == 1 for
unscaled values.)

6.7.3 Numerical Utilities

There are a few other numerical utility functions available as entry points.

double R_pow (double x, double y) [Function]
double R_pow_di (double x, int i) [Function]
double powlp (double x, double y) [Function]

R_pow(x, y) and R_pow_di(x, i) compute x"y and x" 1, respectively using R_FINITE checks
and returning the proper result (the same as R) for the cases where x, y or i are 0 or missing
or infinite or NaN.

powlp(x, y) computes (1 + x) "y, accurately even for small x, i.e., |z| < 1.

double loglp (double x) [Function]
Computes log(1l + x) (log 1 plus z), accurately even for small x, i.e., |z| < 1.

This should be provided by your platform, in which case it is not included in Rmath.h, but is
(probably) in math.h which Rmath.h includes (except under C++, so it may not be declared
for C++98).

Chapter 6: The R APIL: entry points for C code 184

double loglpmx (double x) [Function]
Computes log(1l + x) - x (log 1 plus T minus x), accurately even for small x, i.e., |z| < 1.

double loglpexp (double x) [Function]
Computes log(1l + exp(x)) (log 1 plus exp), accurately, notably for large x, e.g., x > 720.

double loglmexp (double x) [Function]
Computes log(1l - exp(-x)) (log I minus exp), accurately, carefully for two regions of x,
optimally cutting off at log2 (= 0.693147..), using ((-x) > -M_LN2 ? log(-expm1(-x)) :
loglp(-exp(-x))).

double expml (double x) [Function]
Computes exp(x) - 1 (ezp x minus 1), accurately even for small x, i.e., |z| < 1.

This should be provided by your platform, in which case it is not included in Rmath.h, but is
(probably) in math.h which Rmath.h includes (except under C++, so it may not be declared
for C++98).

double lgammalp (double x) [Function]
Computes log(gamma(x + 1)) (log(gamma(1 plus x))), accurately even for small x, i.e., 0 <
x <0.5.

double cospi (double x) [Function]
Computes cos(pi * x) (where pi is 3.14159...), accurately, notably for half integer x.
This might be provided by your platform®, in which case it is not included in Rmath.h, but is

in math.h which Rmath.h includes. (Ensure that neither math.h nor cmath is included before
Rmath.h or define

#define __STDC_WANT_IEC_60559_FUNCS_EXT__ 1

before the first inclusion.)

double sinpi (double x) [Function]
Computes sin(pi * x) accurately, notably for (half) integer x.

This might be provided by your platform, in which case it is not included in Rmath.h, but is
in math.h which Rmath.h includes (but see the comments for cospi).

double Rtanpi (double x) [Function]
Computes tan(pi * x) accurately, notably for integer x, giving NaN for half integer x and
exactly +1 or -1 for (non half) quarter integers.

double tanpi (double x) [Function]
Computes tan(pi * x) accurately for integer x with possibly platform dependent behavior
for half (and quarter) integers. This might be provided by your platform, in which case it is
not included in Rmath.h, but is in math.h which Rmath.h includes (but see the comments for
cospi).

double logspace_add (double logx, double logy) [Function]
double logspace_sub (double logx, double logy) [Function]
double logspace_sum (const double* logx, int n) [Function]

Compute the log of a sum or difference from logs of terms, i.e., “x + y” as log (exp(logx) +
exp(logy)) and “x - y” as log (exp(logx) - exp(logy)), and “sum-i x[i]” as log (sum[i
= 1:n exp(logx[i])]) without causing unnecessary overflows or throwing away too much
accuracy.

5 It is an optional C11 extension.

Chapter 6: The R APIL: entry points for C code 185

int imax2 (int x, int y) [Function]
int imin2 (int x, int y) [Function]
double fmax2 (double x, double y) [Function]
double fmin2 (double x, double y) [Function]

Return the larger (max) or smaller (min) of two integer or double numbers, respectively. Note
that fmax2 and fmin2 differ from C99/C++11’s fmax and fmin when one of the arguments is
a NaN: these versions return NaN.

double sign (double x) [Function]
Compute the signum function, where sign(x) is 1, 0, or —1, when x is positive, 0, or negative,
respectively, and NaN if x is a NaN.

double fsign (double x, double y) [Function]
Performs “transfer of sign” and is defined as |z| * sign(y).

double fprec (double x, double digits) [Function]
Returns the value of x rounded to digits significant decimal digits.

This is the function used by R’s signif ().

double fround (double x, double digits) [Function]
Returns the value of x rounded to digits decimal digits (after the decimal point).

This is the function used by R’s round(). (Note that C99/C++11 provide a round function
but C++98 need not.)

double ftrunc (double x) [Function]
Returns the value of x truncated (to an integer value) towards zero.

6.7.4 Mathematical constants

R has a set of commonly used mathematical constants encompassing constants defined by POSIX
and usually found in headers math.h and cmath, as well as further ones that are used in statistical
computations. These are defined to (at least) 30 digits accuracy in Rmath.h. The following
definitions use 1n(x) for the natural logarithm (log(x) in R).

Name Definition (1n = log) round(value, T)
M_E e 2.7182818
M_LOG2E log2(e) 1.4426950
M_LOG10E log10(e) 0.4342945
M_LN2 In(2) 0.6931472
M_LN10 In(10) 2.3025851
M_PI us 3.1415927
M_PI_2 /2 1.5707963
M_PI_4 /4 0.7853982
M_1_PI 1/m 0.3183099
M_2_PI 2/m 0.6366198
M_2_SQRTPI 2/sqrt(m) 1.1283792
M_SQRT2 sqrt(2) 1.4142136
M_SQRT1_2 1/sqrt(2) 0.7071068
M_SQRT_3 sqrt(3) 1.7320508
M_SQRT_32 sqrt(32) 5.6568542
M_L0G10_2 log10(2) 0.3010300
M_2PI 2m 6.2831853
M_SQRT_PI sqrt(m) 1.7724539
M_1_SQRT_2PI 1/sqrt(2m) 0.3989423
M_SQRT_24dPI sqrt(2/7) 0.7978846

Chapter 6: The R APIL: entry points for C code 186

M_LN_SQRT_PI In(sqrt(m)) 0.5723649
M_LN_SQRT_2PI In(sqrt(27)) 0.9189385
M_LN_SQRT_PId2 In(sqrt(m/2)) 0.2257914

For compatibility with S this file used to define the constant PI this is defunct and should be
replaced by M_PI. Header Constants.h includes either C header £loat.h or C++ header cfloat,
which provide constants such as DBL_MAX.

The included header R_ext/Boolean.h has enumeration constants TRUE and FALSE of type
Rboolean in order to provide a way of using “logical” variables in C consistently. This can
conflict with other software: for example it conflicts with the headers in IJG’s jpeg-9 (but not
earlier versions). Rboolean cannot represent NA® and hence cannot be used for elements of R
logical vectors.

Type Rboolean is being phased out: as from R 4.5.0 the header also makes available the type
bool and values true and false. These are reserved words in C23 and C++11 and available via
header stdbool.h as from C99. (Type bool is not a drop-in replacement for Rboolean as it is
usually stored in a byte and Rboolean in an int, hence 4 bytes.)

Some package maintainers may want to exclude the provision of TRUE, FALSE, true, false
and bool to avoid clashes with other headers such as the IJG ones mentioned above. This cannot
be done entirely (the last three are keywords in C23 and C++11) but as from R 4.5.0 defining
R_INCLUDE_BOOLEAN_H to O before including any header which includes this one (such as R.h
and Rinternals.h) skips its body.

6.8 Optimization
The C code underlying optim can be accessed directly. The user needs to supply a function to
compute the function to be minimized, of the type

typedef double optimfn(int n, double *par, void *ex);

where the first argument is the number of parameters in the second argument. The third argument
is a pointer passed down from the calling routine, normally used to carry auxiliary information.

Some of the methods also require a gradient function

typedef void optimgr(int n, double *par, double *gr, void *ex);

which passes back the gradient in the gr argument. No function is provided for finite-differencing,
nor for approximating the Hessian at the result.

The interfaces (defined in header R_ext/Applic.h) are

e Nelder Mead:
void nmmin(int n, double *xin, double *x, double *Fmin, optimfn fn,
int *fail, double abstol, double intol, void *ex,

double alpha, double beta, double gamma, int trace,
int *fncount, int maxit);
e BFGS:
void vmmin(int n, double *x, double *Fmin,
optimfn fn, optimgr gr, int maxit, int trace,
int *mask, double abstol, double reltol, int nREPORT,
void *ex, int *fncount, int *grcount, int *fail);
e Conjugate gradients:
void cgmin(int n, double *xin, double *x, double *Fmin,
optimfn fn, optimgr gr, int *fail, double abstol,

6 Most compilers do not check values when assigning to an enum and store this type as an int, so this may
appear to work now but it likely to fail in future.

Chapter 6: The R APIL: entry points for C code 187

double intol, void *ex, int type, int trace,
int *fncount, int *grcount, int maxit);

e Limited-memory BFGS with bounds:

void lbfgsb(int n, int lmm, double *x, double *lower,
double *upper, int *nbd, double *Fmin, optimfn fn,
optimgr gr, int *fail, void *ex, double factr,
double pgtol, int *fncount, int *grcount,
int maxit, char *msg, int trace, int nREPORT);

e Simulated annealing:

void samin(int n, double *x, double *Fmin, optimfn fn, int maxit,
int tmax, double temp, int trace, void *ex);

Many of the arguments are common to the various methods. n is the number of parameters, x
or xin is the starting parameters on entry and x the final parameters on exit, with final value
returned in Fmin. Most of the other parameters can be found from the help page for optim: see
the source code src/appl/lbfgsb.c for the values of nbd, which specifies which bounds are to
be used.

6.9 Integration

The C code underlying integrate can be accessed directly. The user needs to supply a vectorizing
C function to compute the function to be integrated, of the type

typedef void integr_fn(double *x, int n, void *ex);

where x[] is both input and output and has length n, i.e., a C function, say fn, of type integr_
fn must basically do for(i in 1:n) x[i] := £(x[i], ex). The vectorization requirement can
be used to speed up the integrand instead of calling it n times. Note that in the current
implementation built on QUADPACK, n will be either 15 or 21. The ex argument is a pointer
passed down from the calling routine, normally used to carry auxiliary information.

There are interfaces (defined in header R_ext/Applic.h) for integrals over finite and infinite
intervals (or “ranges” or “integration boundaries”).

e Finite:
void Rdgags(integr_fn f, void *ex, double *a, double *b,
double *epsabs, double *epsrel,
double *result, double *abserr, int *neval, int *ier,
int *1limit, int *lenw, int *last,
int *iwork, double *work);
e Infinite:

void Rdgagi(integr_fn f, void *ex, double *bound, int *inf,
double *epsabs, double *epsrel,
double *result, double *abserr, int *neval, int *ier,
int *1limit, int *lenw, int *last,
int *iwork, double *work);

Only the 3rd and 4th argument differ for the two integrators; for the finite range integral using
Rdgags, a and b are the integration interval bounds, whereas for an infinite range integral using
Rdgagi, bound is the finite bound of the integration (if the integral is not doubly-infinite) and
inf is a code indicating the kind of integration range,

inf =1 corresponds to (bound, +Inf),
inf = -1 corresponds to (-Inf, bound),

inf = 2 corresponds to (-Inf, +Inf),

Chapter 6: The R APIL: entry points for C code 188

f and ex define the integrand function, see above; epsabs and epsrel specify the absolute
and relative accuracy requested, result, abserr and last are the output components value,
abs.err and subdivisions of the R function integrate, where neval gives the number of
integrand function evaluations, and the error code ier is translated to R’s integrate() $
message, look at that function definition. 1imit corresponds to integrate(. .., subdivisions
= *). It seems you should always define the two work arrays and the length of the second one as

lenw = 4 * limit;
iwork = (int *) R_alloc(limit, sizeof(int));
work = (double *) R_alloc(lenw, sizeof(double));

The comments in the source code in src/appl/integrate.c give more details, particularly
about reasons for failure (ier >= 1).

6.10 Utility functions

R has a fairly comprehensive set of sort routines which are made available to users’ C code. The
following is declared in header file Rinternals.h.

void R_orderVector (int* indx, int n, SEXP arglist, Rboolean [Function]
nalast, Rboolean decreasing)
void R_orderVectorl (int* indx, int n, SEXP x, Rboolean [Function]

nalast, Rboolean decreasing)
R_orderVector () corresponds to R’s order(..., na.last, decreasing). More specifically,
indx <- order(x, y, na.last, decreasing) corresponds to R_orderVector(indx, n, Rf_
lang2(x, y), nalast, decreasing) and for three vectors, Rf_lang3(x,y,z) is used as
arglist.

Both R_orderVector and R_orderVectorl assume the vector indx to be allocated to length
> n. On return, indx[] contains a permutation of 0: (n-1), i.e., O-based C indices (and not
1-based R indices, as R’s order()).

When ordering only one vector, R_orderVector1 is faster and corresponds (but is 0-based)

to R’s indx <- order (x, na.last, decreasing). It was added in R 3.3.0.

All other sort routines are declared in header file R_ext/Utils.h (included by R.h) and
include the following.

void R_isort (int* x, int n) [Function]
void R_rsort (double* x, int n) [Function]
void R_csort (Rcomplex* x, int n) [Function]
void rsort_with_index (double* x, int* index, int n) [Function]

The first three sort integer, real (double) and complex data respectively. (Complex numbers
are sorted by the real part first then the imaginary part.) NAs are sorted last.

rsort_with_index sorts on x, and applies the same permutation to index. NAs are sorted
last.

void Rf_revsort (double* x, int* index, int n) [Function]
Is similar to rsort_with_index but sorts into decreasing order, and NAs are not handled.

void Rf_iPsort (int* x, int n, int k) [Function]
void Rf_rPsort (double* x, int n, int k) [Function]
void Rf_cPsort (Rcomplex* x, int n, int k) [Function]

These all provide (very) partial sorting: they permute x so that x[k] is in the correct place
with smaller values to the left, larger ones to the right.

Chapter 6: The R APIL: entry points for C code 189

void R_gsort (double *v, size_t i, size_t j) [Function]
void R_gsort_I (double *v, int *I, int i, int j) [Function]
void R_gsort_int (int *iv, size_t i, size_t j) [Function]
void R_gsort_int_I (int *iv, int *I, int i, int j) [Function]

These routines sort v[i:j] or iv[i:j] (using l-indexing, i.e., v[1] is the first element) calling
the quicksort algorithm as used by R’s sort (v, method = "quick") and documented on the
help page for the R function sort. The ..._I() versions also return the sort.index () vector
in I. Note that the ordering is not stable, so tied values may be permuted.

Note that NAs are not handled (explicitly) and you should use different sorting functions if
NAs can be present.

subroutine gsort4 (double precision v, integer indx, integer [Function]
ii, integer jj)
subroutine gsort3 (double precision v, integer ii, integer jj) [Function]

The Fortran interface routines for sorting double precision vectors are qsort3 and gsort4,
equivalent to R_gsort and R_gsort_I, respectively.

void R_max_col (double* matrix, int* nr, int* nc, int* maxes, [Function]
int* ties_meth)
Given the nr by nc matrix matrix in column-major (“Fortran”) order, R_max_col() returns
in maxes[i-1] the column number of the maximal element in the i-th row (the same as R’s
max.col() function). In the case of ties (multiple maxima), *ties_meth is an integer code in
1:3 determining the method: 1 = “random”, 2 = “first” and 3 = “last”. See R’s help page
?max.col.

int findInterval (double* xt, int n, double x, Rboolean [Function]
rightmost_closed, Rboolean all_inside, int ilo, int* mflag)
int findInterval2 (double* xt, int n, double x, Rboolean [Function]

rightmost_closed, Rboolean all_inside, Rboolean left_open, int
ilo, int* mflag)
Given the ordered vector xt of length n, return the interval or index of x in xt[], typically
max(i; 1 <i < n & xt[i] < x) where we use 1-indexing as in R and Fortran (but not C). If
rightmost_closed is true, also returns n — 1 if x equals xt[n|. If all_inside is not 0, the result is
coerced to lie in 1: (n-1) even when x is outside the xt[|] range. On return, *mflag equals —1
if x < xt[1], +1 if x >= xt[n], and 0 otherwise.
The algorithm is particularly fast when ilo is set to the last result of findInterval() and x
is a value of a sequence which is increasing or decreasing for subsequent calls.

findInterval2() is a generalization of findInterval (), with an extra Rboolean argument
left_open. Setting left_open = TRUE basically replaces all left-closed right-open intervals [s
by left-open ones (s, see the help page of R function findInterval for details.

There is also an F77_CALL(interv) () version of findInterval() with the same arguments,
but all pointers.

A system-independent interface to produce the name of a temporary file is provided as

char * R_tmpnam (const char *prefix, const char *tmpdir) [Function]

char * R_tmpnam2 (const char *prefix, const char *tmpdir, [Function]
const char *fileext)

void R_free_tmpnam (char *name) [Function]

Return a pathname for a temporary file with name beginning with prefix and ending with
fileext in directory tmpdir. A NULL prefix or extension is replaced by "". Note that the
return value is dynamically allocated and should be freed using R_free_tmpnam when no
longer needed (unlike the system call tmpnam). Freeing the result using free is no longer
recommended.

Chapter 6: The R APIL: entry points for C code 190

double R_atof (const char* str) [Function]

double R_strtod (const char* str, char ** end) [Function]
Implementations of the C99/POSIX functions atof and strtod which guarantee platform-
and locale-independent behaviour, including always using the period as the decimal point aka
‘radix character’ and returning R’s NA_REAL_ for all unconverted strings, including "NA".

There is also the internal function used to expand file names in several R functions, and called
directly by path.expand.

const char * R_ExpandFileName (const char *fn) [Function]
Expand a path name fn by replacing a leading tilde by the user’s home directory (if defined).
The precise meaning is platform-specific; it will usually be taken from the environment variable
HOME if this is defined.

For historical reasons there are Fortran interfaces to functions DIMACH and I1MACH. These
can be called from C code as e.g. F77_CALL(d1mach) (4). Note that these are emulations of the
original functions by Fox, Hall and Schryer on Netlib at https://netlib.org/slatec/src/ for
IEC 60559 arithmetic (required by R).

6.11 Re-encoding

R has its own C-level interface to the encoding conversion capabilities provided by iconv because
there are incompatibilities between the declarations in different implementations of iconv.

These are declared in header file R_ext/Riconv.h.

void * Riconv_open (const char *to, const char *from) [Function]
Set up a pointer to an encoding object to be used to convert between two encodings: ""
indicates the current locale.

size_t Riconv (void *cd, const char *xinbuf, size_t [Function]
xinbytesleft, char **outbuf, size_t *outbytesleft)

Convert as much as possible of inbuf to outbuf. Initially the size_t variables indicate the
number of bytes available in the buffers, and they are updated (and the char pointers are
updated to point to the next free byte in the buffer). The return value is the number of
characters converted, or (size_t)-1 (beware: size_t is usually an unsigned type). It should
be safe to assume that an error condition sets errno to one of E2BIG (the output buffer is
full), EILSEQ (the input cannot be converted, and might be invalid in the encoding specified)
or EINVAL (the input does not end with a complete multi-byte character).

int Riconv_close (void * cd) [Function]
Free the resources of an encoding object.

6.12 Condition handling and cleanup code

Three functions are available for establishing condition handlers from within C code:

#include <Rinternals.h>

SEXP R_tryCatchError (SEXP (*fun) (void *data), void *data,
SEXP (*hndlr) (SEXP cond, void *hdata), void *hdata);

SEXP R_tryCatch(SEXP (*fun) (void *data), void *data,
SEXP,
SEXP (*hndlr) (SEXP cond, void *hdata), void *hdata,
void (*clean) (void *cdata), void *cdata);

https://netlib.org/slatec/src/

Chapter 6: The R APIL: entry points for C code 191

SEXP R_withCallingErrorHandler (SEXP (*fun) (void *data), void *data,
SEXP (*hndlr) (SEXP cond, void *hdata), void *hdata)

R_tryCatchError establishes an exiting handler for conditions inheriting form class error.

R_tryCatch can be used to establish a handler for other conditions and to register a cleanup
action. The conditions to be handled are specified as a character vector (STRSXP). A NULL
pointer can be passed as fun or clean if condition handling or cleanup are not needed.

These are currently implemented using the R-level tryCatch mechanism so are subject to
some overhead.

R_withCallingErrorHandler establishes a calling handler for conditions inheriting from class
error. It establishes the handler without calling back into R and will therefore be more efficient.

The function R_UnwindProtect can be used to ensure that a cleanup action takes place on
ordinary return as well as on a non-local transfer of control, which R implements as a longjmp.

SEXP R_UnwindProtect (SEXP (*fun) (void *data), void *data,
void (*clean) (void *data, Rboolean jump), void *cdata,
SEXP cont);

R_UnwindProtect can be used in two ways. The simper usage, suitable for use in C code,
passes NULL for the cont argument. R_UnwindProtect will call fun(data). If fun returns a value,
then R_UnwindProtect calls clean(cleandata, FALSE) before returning the value returned by
fun. If fun executes a non-local transfer of control, then clean(cleandata, TRUE) is called,
and the non-local transfer of control is resumed.

The second use pattern, suitable to support C++ stack unwinding, uses two additional
functions:

SEXP R_MakeUnwindCont () ;
NORET void R_ContinueUnwind(SEXP cont);

R_MakeUnwindCont allocates a continuation token cont to pass to R_UnwindProtect. This token
should be protected with PROTECT before calling R_UnwindProtect. When the clean function is
called with jump == TRUE, indicating that R is executing a non-local transfer of control, it can
throw a C++ exception to a C++ catch outside the C++ code to be unwound, and then use the
continuation token in the a call R_ContinueUnwind(cont) to resume the non-local transfer of
control within R.

An older interface for the simpler R_MakeUnwindCont usage remains available:

SEXP R_ExecWithCleanup(SEXP (*fun) (void *), void *data,
void (*cleanfun) (void *), void *cleandata);

cleanfun is called on both regular returns and non-local transfers of control, but without an
indication of which form of exit is occurring.

The function R_ToplevelExec can be used to execute code without allowing any non-local
transfers of control, including by user interrupts or invoking abort restarts.

Rboolean R_ToplevelExec(void (*fun) (void *), void *data);

The return value is TRUE if fun returns normally and FALSE if fun exits with a jump to top
level. fun is called with a new top-level context. Condition handlers and other features of the
current top level context when R_ToplevelExec is called will not be seen by the code in fun.
Two convenience functions built on R_ToplevelExec are R_tryEval and R_tryEvalSilent.

SEXP R_tryEval(SEXP e, SEXP env, int *ErrorQOccurred);
SEXP R_tryEvalSilent (SEXP e, SEXP env, int *ErrorOccurred)
These return a NULL pointer if evaluating the expression results in a jump to top level.

Using R_ToplevelExec is usually only appropriate in situations where one might want to run
code in a separate thread if that was an option. For example, finalizers are run in a separate top
level context. The other functions mentioned in this section will usually be more appropriate
choices.

Chapter 6: The R APIL: entry points for C code 192

6.13 Allowing interrupts

No part of R can be interrupted whilst running long computations in compiled code, so program-
mers should make provision for the code to be interrupted at suitable points by calling from

C
#include <R_ext/Utils.h>

void R_CheckUserInterrupt(void);
and from Fortran
subroutine rchkusr()

These check if the user has requested an interrupt, and if so branch to R’s error signaling
functions.

Note that it is possible that the code behind one of the entry points defined here if called
from your C or Fortran code could be interruptible or generate an error and so not return to
your code.

6.14 C stack checking

R provides a framework for detecting when the amount of C stack is too low. Two functions are
available:

void R_CheckStack(void)
void R_CheckStack2(size_t extra)

These functions signal an error when a low stack condition is detected. R_CheckStack2 does so
when extra bytes are more than is available on the stack.

This mechanism is not always available (See Section 8.1.5 [Threading issues|, page 210) and
it is best to avoid deep recursions in C and to track recursion depth when using recursion is
unavoidable. C compilers will often optimize tail recursions to avoid consuming C stack, so it is
best to write code in a tail-recursive form when possible.

6.15 Custom serialization input and output

The internal serialization code uses a framework for serializing from and to different output
media. This framework has been in use internally for some time, but its use in packages is highly
experimental and may need to be changed or dropped once some experience is gained. Package
authors considering using this framework should keep this in mind.

Client code will define a persistent stream structure with declarations like

struct R_outpstream_st out;
struct R_inpstream_st in;

These are filled in by calling these functions with appropriate arguments:

void R_InitInPStream(R_inpstream_t stream, R_pstream_data_t data,
R_pstream_format_t type,
int (*inchar) (R_inpstream_t),
void (*inbytes) (R_inpstream_t, void *, int),
SEXP (*phook) (SEXP, SEXP), SEXP pdata);
void R_InitOutPStream(R_outpstream_t stream, R_pstream_data_t data,
R_pstream_format_t type, int version,
void (*outchar) (R_outpstream_t, int),
void (*outbytes) (R_outpstream_t, void *, int),
SEXP (*phook) (SEXP, SEXP), SEXP pdata);

Chapter 6: The R APIL: entry points for C code 193

Code should not depend on the fields of the stream structures. Simpler initializers are available
for serializing to or from a file pointer:

void R_InitFileOutPStream(R_outpstream_t stream, FILE *fp,
R_pstream_format_t type, int version,
SEXP (*phook) (SEXP, SEXP), SEXP pdata);
void R_InitFileInPStream(R_inpstream_t stream, FILE xfp,
R_pstream_format_t type,
SEXP (*phook) (SEXP, SEXP), SEXP pdata);

Once the stream structures are set up they can be used by calling

void R_Serialize(SEXP s, R_outpstream_t stream)
SEXP R_Unserialize(R_inpstream_t stream)

Examples can be found in the R sources in src/main/serialize.c.

6.16 Platform and version information

The header files define USING_R, which can be used to test if the code is indeed being used with
R.

Header file Rconfig.h (included by R.h) is used to define platform-specific macros that are
mainly for use in other header files. The macro WORDS_BIGENDIAN is defined on big-endian”
systems (e.g. most OSes on Sparc and PowerPC hardware) and not on little-endian systems
(nowadays all the commoner R platforms). It can be useful when manipulating binary files. NB:
these macros apply only to the C compiler used to build R, not necessarily to another C or C++
compiler.

Header file Rversion.h (not included by R.h) defines a macro R_VERSION giving the version
number encoded as an integer, plus a macro R_Version to do the encoding. This can be used to
test if the version of R is late enough, or to include back-compatibility features. For protection
against very old versions of R which did not have this macro, use a construction such as

#if defined (R_VERSION) && R_VERSION >= R_Version(3, 1, 0)
#endif
More detailed information is available in the macros R_MAJOR, R_MINOR, R_YEAR, R_MONTH and

R_DAY: see the header file Rversion.h for their format. Note that the minor version includes
the patch level (as in ‘2.27).

Packages which use alloca need to ensure it is defined: as it is part of neither C nor POSIX
there is no standard way to do so. One can use

#include <Rconfig.h> // for HAVE_ALLOCA_H

#ifdef __GNUC__

// this covers gcc, clang, icc

undef alloca

define alloca(x) __builtin_alloca((x))

#elif defined (HAVE_ALLOCA_H)

// needed for native compilers on Solaris and AIX
include <alloca.h>

#endif

(and this should be included before standard C headers such as std1lib.h, since on some platforms
these include malloc.h which may have a conflicting definition), which suffices for known R
platforms.

7 https://en.wikipedia.org/wiki/Endianness.

https://en.wikipedia.org/wiki/Endianness

Chapter 6: The R APIL: entry points for C code 194

6.17 Inlining C functions

The C99 keyword inline should be recognized by all compilers nowadays used to build R.
Portable code which might be used with earlier versions of R can be written using the macro
R_INLINE (defined in file Rconfig.h included by R.h), as for example from package cluster
(https://CRAN.R-project.org/package=cluster)

#include <R.h>

static R_INLINE int ind_2(int 1, int j)
{

}

Be aware that using inlining with functions in more than one compilation unit is almost
impossible to do portably, see https://www.greenend.org.uk/rjk/tech/inline.html, so this
usage is for static functions as in the example. All the R configure code has checked is that
R_INLINE can be used in a single C file with the compiler used to build R. We recommend that
packages making extensive use of inlining include their own configure code.

6.18 Controlling visibility

Header R_ext/Visibility.h has some definitions for controlling the visibility of entry points.
These are only effective when ‘HAVE_VISIBILITY_ATTRIBUTE’ is defined — this is checked when
R is configured and recorded in header Rconfig.h (included by R_ext/Visibility.h). It is
often defined on modern Unix-alikes with a recent compiler® but not supported on Windows.
Minimizing the visibility of symbols in a shared library will both speed up its loading (unlikely
to be significant) and reduce the possibility of linking to other entry points of the same name.

C/C++ entry points prefixed by attribute_hidden will not be visible in the shared object.
There is no comparable mechanism for Fortran entry points, but there is a more comprehensive
scheme used by, for example package stats. Most compilers which allow control of visibility will
allow control of visibility for all symbols via a flag, and where known the flag is encapsulated
in the macros ‘C_VISIBILITY’, ‘CXX_VISIBILITY® and ‘F_VISIBILITY’ for C, C++ and Fortran
compilers.'® These are defined in etc/Makeconf and so available for normal compilation of
package code. For example, src/Makevars could include some of

PKG_CFLAGS=$(C_VISIBILITY)
PKG_CXXFLAGS=$ (CXX_VISIBILITY)
PKG_FFLAGS=$(F_VISIBILITY)

This would end up with no visible entry points, which would be pointless. However, the effect
of the flags can be overridden by using the attribute_visible prefix. A shared object which
registers its entry points needs only for have one visible entry point, its initializer, so for example
package stats has

void attribute_visible R_init_stats(D1lInfo *d11)

{
R_registerRoutines(dll, CEntries, CallEntries, FortEntries, NULL);
R_useDynamicSymbols(d1ll, FALSE);

}

8 Not pre-2023 Intel nor AIX nor Solaris compilers.
9 This applies to the compiler for the default C++ dialect and not necessarily to other dialects.

10 1p many cases Fortran compilers accept the flag but do not actually hide their symbols: at the time of writing
that was true of gfortran, flang and Intel’s ifx.

https://CRAN.R-project.org/package=cluster
https://CRAN.R-project.org/package=cluster
https://www.greenend.org.uk/rjk/tech/inline.html

Chapter 6: The R APIL: entry points for C code 195

Because the ‘C_VISIBILITY’ mechanism is only useful in conjunction with attribute_
visible, it is not enabled unless ‘HAVE_VISIBILITY_ATTRIBUTE’ is defined. The usual visibility
flag is —~fvisibility=hidden: some compilers also support -fvisibility-inlines-hidden
which can be used by overriding ‘C_VISIBILITY and ‘CXX_VISIBILITY’ in config.site when
building R, or editing etc/Makeconf in the R installation.

Note that configure only checks that visibility attributes and flags are accepted, not that
they actually hide symbols.

The visibility mechanism is not available on Windows, but there is an equally
effective way to control which entry points are visible, by supplying a definitions file
pkgname/src/pkgname-win.def: only entry points listed in that file will be visible. Again using
stats as an example, it has

LIBRARY stats.dll
EXPORTS
R_init_stats

6.19 Using these functions in your own C code

It is possible to build Mathlib, the R set of mathematical functions documented in Rmath.h, as a
standalone library 1ibRmath under both Unix-alikes and Windows. (This includes the functions
documented in Section 6.7 [Numerical analysis subroutines], page 181, as from that header file.)

The library is not built automatically when R is installed, but can be built in the directory
src/nmath/standalone in the R sources: see the file README there. To use the code in your own
C program include

#define MATHLIB_STANDALONE
#include <Rmath.h>

and link against ‘~-1Rmath’ (and perhaps ‘-1m’). There is an example file test.c.

A little care is needed to use the random-number routines. You will need to supply the
uniform random number generator

double unif_rand(void)

or use the one supplied (and with a dynamic library or DLL you will have to use the one supplied,
which is the Marsaglia-multicarry with an entry points

set_seed(unsigned int, unsigned int)
to set its seeds and

get_seed(unsigned int *, unsigned int *)
to read the seeds).

6.20 Organization of header files

The header files which R installs are in directory R_INCLUDE_DIR (default R_HOME/include).
This currently includes

R.h includes many other files

Rinternals.h definitions for using R’s internal structures

Rdefines.h macros for an S-like interface to the above (no
longer maintained)

Rmath.h standalone math library

Rversion.h R version information

Rinterface.h for add-on front-ends (Unix-alikes only)

Rembedded.h for add-on front-ends

R_ext/Applic.h optimization, integration and some LAPACK

ones)

Chapter 6: The R APIL: entry points for C code 196

R_ext/BLAS.h C definitions for BLAS routines

R_ext/Callbacks.h C (and R function) top-level task handlers

R_ext/GetX11Image.h X11Image interface used by package trkplot

R_ext/Lapack.h C definitions for some LAPACK routines

R_ext/Linpack.h C definitions for some LINPACK routines, not
all of which are included in R

R_ext/Parse.h a small part of R’s parse interface: not part of
the stable API.

R_ext/RStartup.h for add-on front-ends

R_ext/Rdynload.h needed to register compiled code in packages

R_ext/Riconv.h interface to iconv

R_ext/Visibility.h definitions controlling visibility

R_ext/eventloop.h for add-on front-ends and for packages that need

to share in the R event loops (not Windows)

The following headers are included by R.h:

Rconfig.h configuration info that is made available

R_ext/Arith.h handling for NAs, NaNs, Inf/-Inf

R_ext/Boolean.h TRUE/FALSE type

R_ext/Complex.h C typedefs for R’s complex

R_ext/Constants.h constants

R_ext/Error.h error signaling

R_ext/Memory.h memory allocation

R_ext/Print.h Rprintf and variations.

R_ext/RS.h definitions common to R.h and the former S.h,
including F77_CALL etc.

R_ext/Random.h random number generation

R_ext/Utils.h sorting and other utilities

R_ext/libextern.h definitions for exports from R.d11 on Windows.

The graphics systems are exposed in headers R_ext/GraphicsEngine.h, R_
ext/GraphicsDevice.h (which it includes) and R_ext/QuartzDevice.h. Facilities for defining
custom connection implementations are provided in R_ext/Connections.h, but make sure you
consult the file before use.

Let us re-iterate the advice to include in C++ code system headers before the R header
files, especially Rinternals.h (included by Rdefines.h) and Rmath.h, which redefine names
which may be used in system headers, or (preferably and the default since R 4.5.0) to define
R_NO_REMAP.

6.21 Moving into C API compliance

Work is in progress to clarify and tighten the C API for extending R code. This will help make
package C code more robust, and will facilitate maintaining and improving the R source code
without impacting package space. In the process a number of entry points intended for internal
use will be removed from installed header files or hidden, and others will be replaced by more
robust versions better suited for use in package C code. This section describes how packages can
move from using non-API entry points to using ones available and supported in the APIL.

Work in progress: This section is a work in progress and will be adjusted as changes are made
to the APIL.

Chapter 6: The R APIL: entry points for C code 197

6.21.1 Some API replacements for non-API entry points

Some non-API entry points intended for internal use have long had entry points in the API that
can be used instead. In other cases new entry point have been added that are more appropriate
for use in packages; typically these include more extensive error checking on arguments.

This table lists some non-API functions used in packages and the API functions that should
be used instead:

EXTPTR_PROT
EXTPTR_TAG
EXTPTR_PTR
Use R_ExternalPtrProtected, R_ExternalPtrTag, and R_ExternalPtrAddr.

OBJECT
IS_S4_0BJECT
Use Rf _isObject and Rf_isS4.

GetOption
Use Rf _GetOptionl.

R_1lsInternal
Use R_1sInternal3.

REALO
COMPLEXO Use REAL and COMPLEX.

STRING_PTR

DATAPTR

STDVEC_DATAPTR
Use STRING_PTR_RO and DATAPTR_RO. Obtaining writable pointers to these data can
violate the memory manager’s integrity assumptions and is not supported.

isFrame Use Rf_isDataFrame, added in R 4.5.0.

BODY

FORMALS

CLOENV Use R_ClosureBody, R_ClosureFormals, and R_ClosureEnv; these were added in
R 4.5.0.

ENCLOS Use R_ParentEnv, added in R 4.5.0.
IS_ASCII Use Rf_charIsASCII, added in R 4.5.0.
IS_UTF8 Use charIsUTF8, added in R 4.5.0, or avoid completely.

Rf_allocSExp
Use an appropriate constructor.

Rf_findVarInFrame3
Use R_existsVarInFrame to test for existence.

Rf_findVar

Rf_findVarInFrame
Use R_getVar or R_getVarEx, added in R 4.5.0. In some cases using eval may
suffice.

ATTRIB Use Rf _getAttrib for individual attributes. To test whether there are any attributes
use ANY_ATTRIB, added in R 4.5.0.

Chapter 6: The R APIL: entry points for C code 198

SET_ATTRIB

SET_OBJECT
Use Rf_setAttrib for individual attributes, DUPLICATE_ATTRIB or SHALLOW_
DUPLICATE_ATTRIB for copying attributes from one object to another. Use CLEAR_
ATTRIB for removing all attributes, added in R 4.5.0.

R_GetCurrentEnv
Use environment () at the R level and pass the result as an argument to your C
function.

For recently added entry points packages that need to be compiled under older versions that
do not yet contain these entry points can use back-ported versions defined conditionally. See
Section 6.21.8 [Some backports], page 200.

6.21.2 Creating environments
An idiom appearing in a number of packages is to create an environment as

SEXP env = Rf_allocSExp(ENVSXP) ;
SET_ENCLOS(env, parent);

The function Rf_allocSExp and mutation functions like SET_ENCLOS, SET_FRAME, and SET_
HASHTAB are not part of the API as they expose internal structure that might need to change in
the future. A proper constructor function should be used instead. The constructor function for
environments is R_NewEnv, so the new environment should be created as

SEXP env = R_NewEnv(parent, FALSE, 0);

6.21.3 Creating call expressions

Another idiom used in some packages is to create a call expression with space for two arguments
as

SEXP expr = Rf_allocList(3);
SET_TYPEOF (expr, "LANGSXP");

and then fill in the function and argument expressions. SET_TYPEQOF will also not be available
to packages in the future. An alternative way to construct the expression that will work in any
R version is

SEXP expr = LCONS(R_NilValue, allocList(2));
R 4.4.1 added the constructor Rf _allocLang, so the expression can be created as
SEXP env = Rf_allocLang(3);

6.21.4 Creating closures
Yet another common idiom is to create a new closure as

SEXP fun = Rf_allocSExp(CLOSXP);
SET_FORMALS(fun, formals);
SET_BODY (fun, body);

SET_CLOENV (fun, env);

R 4.5.0 adds the constructor R_mkClosure; this can be used as

SEXP fun = R_mkClosure(formals, body, env);

6.21.5 Querying CHARSXP encoding

A number of packages query encoding bits set on CHARSXP objects via macros IS_ASCII and
IS_UTF8, some packages also via IS_BYTES and IS_LATIN1. These macros are not part of the
API and packages have been copying their definition and directly accessing the bits in memory.

Chapter 6: The R APIL: entry points for C code 199

The structure of the object header is, however, internal to R and may have to change in the
future.

IS_ASCII can be replaced by Rf_charIsASCII, added in R 4.5.0. It can also be replaced by
code that checks individual characters (bytes).

Information provided by the other macros is available via function Rf _getCharCE, which has
been part of the API since R 2.7.0. Before switching to Rf _getCharCE, packages are, however,
advised to check whether the encoding information is really needed and whether it is used
correctly.

Most code should be able to work with complete CHARSXPs and never look at the individual
bytes. When access to characters and bytes (of strings other than CE_BYTES) is needed, one
would use Rf_translateChar or Rf_translateCharUTF8. These functions internally already
check the encoding and whether the string is ASCII and only translate when needed, which
should be rarely since R >= 4.2.0 (UTF-8 is used as native encoding on most systems running
R).

Several packages use the encoding information to find out whether an internal string repres-
entation visible via CHAR is UTF-8 or latinl. R 4.5.0 provides functions Rf_charIsUTF8 and
Rf_charIsLatinl for this purpose, which are safer against future changes and handle also native
strings when running in the corresponding locale. Note that both will be true for ASCII strings.

A pattern used in several packages is
char *asutf8(SEXP c)

{
if (1IS_UTF8(s) && 'IS_ASCII(s)) // not compliant
return Rf_translateCharUTF8(s);
else
return CHAR(s);
}

to make this code compliant, simply call

char *asutf8(SEXP c)
{

return Rf_translateCharUTF8(s); // compliant
}

as the encoding flags are already checked in Rf _translateCharUTF8. Also note the non-compliant
check does not handle native encoding.

6.21.6 Working with attributes

The current implementation (R 4.5.0) represents attributes internally as a linked list. It may
be useful to change this at some point, so external code should not rely on this representation.
The low-level functions ATTRIB and SET_ATTRIB reveal this representation and are therefore
not part of the API. Individual attributes can be accessed and set with Rf _getAttrib and
Rf_setAttrib. Attributes can be copied from one object to another with DUPLICATE_ATTRIB
and SHALLOW_DUPLICATE_ATTRIB. The CLEAR_ATTRIB function added in R 4.5.0 can be used
to remove all attributes. These functions ensure can that certain consistency requirements are
maintained, such as setting the object bit according to whether a class attribute is present.

Some additional functions may be added for working with attributes.

6.21.7 Working variable bindings

The functions Rf _findVar and Rf_findVarInFrame have been used in a number of packages but
are too low level to be part of the API. For most uses the functions R_getVar and R_getVarEx
added in R 4.5.0 will be sufficient. These are analogous to the R functions get and getO.

Chapter 6: The R APIL: entry points for C code 200

In rare cases package R or C code may want to obtain more detailed information on a binding,
such as whether the binding is delayed or not. This is currently not possible within the API, but
is under consideration.

6.21.8 Some backports

This section lists backports of recently added definitions that can be used in packages that need
to be compiled under older versions of R that do not yet contain these entry points.

#if R_VERSION < R_Version(4, 4, 1)
#define allocLang Rf_allocLang

SEXP Rf_allocLang(int n)

{
if (n > 0)
return LCONS(R_NilValue, Rf_allocList(n - 1));
else
return R_NilValue;
}
#endif

#if R_VERSION < R_Version(4, 5, 0)

define isDataFrame(x) Rf_isFrame(x)

define R_ClosureFormals(x) FORMALS(x)
define R_ClosureEnv(x) CLOENV(x)

define R_ParentEnv(x) ENCLOS(x)

SEXP R_mkClosure(SEXP formals, SEXP body, SEXP env)

{
SEXP fun = Rf_allocSExp(CLOSXP);
SET_FORMALS(fun, formals);
SET_BODY (fun, body);
SET_CLOENV(fun, env);
return fun;

}

void CLEAR_ATTRIB(SEXP x)

{
SET_ATTRIB(x, R_NilValue);
SET_OBJECT(x, 0);
UNSET_S4_0BJECT (x) ;

}

#endif

201

7 Generic functions and methods

R programmers will often want to add methods for existing generic functions, and may want to
add new generic functions or make existing functions generic. In this chapter we give guidelines
for doing so, with examples of the problems caused by not adhering to them.

This chapter only covers the ‘informal’ class system copied from S3, and not with the S4
(formal) methods of package methods.

First, a caveat: a function named gen. cl will be invoked by the generic gen for class cI, so
do not name functions in this style unless they are intended to be methods.

The key function for methods is NextMethod, which dispatches the next method. It is quite
typical for a method function to make a few changes to its arguments, dispatch to the next
method, receive the results and modify them a little. An example is

t.data.frame <- function(x)

{

x <- as.matrix(x)
NextMethod ("t")
}
Note that the example above works because there is a next method, the default method, not
that a new method is selected when the class is changed.

Any method a programmer writes may be invoked from another method by NextMethod,
with the arguments appropriate to the previous method. Further, the programmer cannot predict
which method NextMethod will pick (it might be one not yet dreamt of)), and the end user calling
the generic needs to be able to pass arguments to the next method. For this to work

A method must have all the arguments of the generic, including . .. if the generic
does.

It is a grave misunderstanding to think that a method needs only to accept the arguments it
needs. The original S version of predict.1lm did not have a ... argument, although predict
did. It soon became clear that predict.glm needed an argument dispersion to handle over-
dispersion. As predict.lm had neither a dispersion nor a ... argument, NextMethod could
no longer be used. (The legacy, two direct calls to predict.lm, lives on in predict.glm in R,
which is based on the workaround for S3 written by Venables & Ripley.)

Further, the user is entitled to use positional matching when calling the generic, and the
arguments to a method called by UseMethod are those of the call to the generic. Thus

A method must have arguments in exactly the same order as the gemeric.
To see the scale of this problem, consider the generic function scale, defined as
scale <- function (x, center = TRUE, scale = TRUE)
UseMethod("scale")
Suppose an unthinking package writer created methods such as
scale.foo <- function(x, scale = FALSE, ...) { }
Then for x of class "foo" the calls
scale(x, , TRUE)
scale(x, scale = TRUE)
would most likely do different things, to the justifiable consternation of the end user.

To add a further twist, which default is used when a user calls scale(x) in our example?

What if
scale.bar <- function(x, center, scale = TRUE) NextMethod("scale")

and x has class c("bar", "foo")? It is the default specified in the method that is used, but the
default specified in the generic may be the one the user sees. This leads to the recommendation:

Chapter 7: Generic functions and methods 202

If the generic specifies defaults, all methods should use the same defaults.
An easy way to follow these recommendations is to always keep generics simple, e.g.
scale <- function(x, ...) UseMethod("scale")

Only add parameters and defaults to the generic if they make sense in all possible methods
implementing it.

7.1 Adding new generics

When creating a new generic function, bear in mind that its argument list will be the maximal
set of arguments for methods, including those written elsewhere years later. So choosing a good
set of arguments may well be an important design issue, and there need to be good arguments
not to include a ... argument.

If a ... argument is supplied, some thought should be given to its position in the argument
sequence. Arguments which follow ... must be named in calls to the function, and they must
be named in full (partial matching is suppressed after ...). Formal arguments before ... can
be partially matched, and so may ‘swallow’ actual arguments intended for Although it is
commonplace to make the ... argument the last one, that is not always the right choice.

Sometimes package writers want to make generic a function in the base package, and request
a change in R. This may be justifiable, but making a function generic with the old definition as
the default method does have a small performance cost. It is never necessary, as a package can
take over a function in the base package and make it generic by something like

foo <- function(object, ...) UseMethod("foo")
foo.default <- function(object, ...) base::foo(object)

Earlier versions of this manual suggested assigning foo.default <- base::foo. This is not a
good idea, as it captures the base function at the time of installation and it might be changed as
R is patched or updated.

The same idea can be applied for functions in other packages.

203

8 Linking GUlIs and other front-ends to R

There are a number of ways to build front-ends to R: we take this to mean a GUI or other
application that has the ability to submit commands to R and perhaps to receive results back
(not necessarily in a text format). There are other routes besides those described here, for
example the package Rserve (https://CRAN.R-project.org/package=Rserve) (from CRAN,
see also https://www.rforge.net/Rserve/) and connections to Java in ‘JRI’ (part of the rJava
(https://CRAN.R-project.org/package=rJava) package on CRAN).

Note that the APIs described in this chapter are only intended to be used in an alternative
front-end: they are not part of the API made available for R packages and can be dangerous to
use in a conventional package (although packages may contain alternative front-ends). Conversely
some of the functions from the API (such as R_alloc) should not be used in front-ends.

8.1 Embedding R under Unix-alikes

R can be built as a shared library! if configured with ——enable-R-shlib. This shared library
can be used to run R from alternative front-end programs. We will assume this has been
done for the rest of this section. Also, it can be built as a static library if configured with
--enable-R-static-1ib, and that can be used in a very similar way (at least on Linux: on
other platforms one needs to ensure that all the symbols exported by 1ibR.a are linked into the
front-end).

The command-line R front-end, R_HOME/bin/exec/R, is one such example, and the former
GNOME (see package gnomeGUI on CRAN’s ‘Archive’ area) and macOS consoles are others.
The source for R_HOME/bin/exec/R is in file src/main/Rmain.c and is very simple

int Rf_initialize_R(int ac, char **av); /* in ../unix/system.c */
void Rf_mainloop(); /* in main.c */

extern int R_running_as_main_program; /* in ../unix/system.c */

int main(int ac, char **av)

{
R_running_as_main_program = 1;
Rf_initialize_R(ac, av);
Rf _mainloop(); /* does not return */
return O;

}

indeed, misleadingly simple. Remember that R_HOME/bin/exec/R is run from a shell script
R_HOME/bin/R which sets up the environment for the executable, and this is used for

e Setting R_HOME and checking it is valid, as well as the path R_SHARE_DIR and R_DOC_DIR to
the installed share and doc directory trees. Also setting R_ARCH if needed.

e Setting LD_LIBRARY_PATH to include the directories used in linking R. This is recorded as
the default setting of R_LLD_LIBRARY_PATH in the shell script R_HOME/etcR_ARCH/1dpaths.

e Processing some of the arguments, for example to run R under a debugger and to launch
alternative front-ends to provide GUIs.
The first two of these can be achieved for your front-end by running it via R CMD. So, for example

R CMD /usr/local/lib/R/bin/exec/R
R CMD exec/R

1 In the parlance of macOS this is a dynamic library, and is the normal way to build R on that platform.

https://CRAN.R-project.org/package=Rserve
https://www.rforge.net/Rserve/
https://CRAN.R-project.org/package=rJava
https://CRAN.R-project.org/package=rJava

Chapter 8: Linking GUIs and other front-ends to R 204

will both work in a standard R installation. (R CMD looks first for executables in R_HOME/bin.
These command-lines need modification if a sub-architecture is in use.) If you do not want to
run your front-end in this way, you need to ensure that R_HOME is set and LD_LIBRARY_PATH is
suitable. (The latter might well be, but modern Unix/Linux systems do not normally include
/usr/local/lib (/usr/local/1ib64 on some architectures), and R does look there for system
components.)

The other senses in which this example is too simple are that all the internal defaults are used
and that control is handed over to the R main loop. There are a number of small examples? in the
tests/Embedding directory. These make use of Rf _initEmbeddedR in src/main/Rembedded.c,
and essentially use

#include <Rembedded.h>

int main(int ac, char **av)

{
/* do some setup */
Rf_initEmbeddedR(argc, argv);
/* do some more setup */
/* submit some code to R, which is done interactively via
run_Rmainloop();
A possible substitute for a pseudo-console is
R_ReplDLLinit();
while (R_ReplDLLdo1() > 0) {
/* add user actions here if desired */
¥
*/
Rf_endEmbeddedR(0) ;
/* final tidying up after R is shutdown */
return O;
3

If you do not want to pass R arguments, you can fake an argv array, for example by

char *argv[]= {"REmbeddedPostgres", "--silent"};
Rf_initEmbeddedR (sizeof (argv)/sizeof (argv[0]), argv);

However, to make a GUI we usually do want to run run_Rmainloop after setting up various
parts of R to talk to our GUI, and arranging for our GUI callbacks to be called during the R
mainloop.

One issue to watch is that on some platforms Rf_initEmbeddedR and Rf_endEmbeddedR
change the settings of the FPU (e.g. to allow errors to be trapped and to make use of extended
precision registers).

The standard code sets up a session temporary directory in the usual way, unless R_TempDir
is set to a non-NULL value before Rf _initEmbeddedR is called. In that case the value is assumed
to contain an existing writable directory, and it is not cleaned up when R is shut down.

Rf_initEmbeddedR sets R to be in interactive mode: you can set R_Interactive (defined in
Rinterface.h) subsequently to change this.

2 but these are not part of the automated test procedures and so little tested.

Chapter 8: Linking GUIs and other front-ends to R 205

Note that R expects to be run with the locale category ‘LC_NUMERIC’ set to its default value
of C, and so should not be embedded into an application which changes that.

It is the user’s responsibility to attempt to initialize only once. To protect the R interpreter,
Rf_initialize_R will exit the process if re-initialization is attempted.

8.1.1 Compiling against the R library
Suitable flags to compile and link against the R (shared or static) library can be found by

R CMD config --cppflags
R CMD config --ldflags

(These apply only to an uninstalled copy or a standard install.)

If R is installed, pkg-config is available and neither sub-architectures nor a macOS framework
have been used, alternatives for a shared R library are

pkg-config --cflags 1ibR
pkg-config --1libs 1ibR

and for a static R library

pkg-config --cflags 1ibR
pkg-config --static —--libs 1ibR

(This may work for an installed OS framework if pkg-config is taught where to look for 1ibR.pc:
it is installed inside the framework.)

However, a more comprehensive way is to set up a Makefile to compile the front-end. Suppose
file myfe.c is to be compiled to myfe. A suitable Makefile might be

WARNING: does not work when ${R_HOME} contains spaces
include ${R_HOME}/etc${R_ARCH}/Makeconf
all: myfe

The following is not needed, but avoids PIC flags.
myfe.o: myfe.c
$(CC) $(ALL_CPPFLAGS) $(CFLAGS) -c myfe.c -o $@

replace $(LIBR) $(LIBS) by $(STATIC_LIBR) if R was built with a static 1ibR
myfe: myfe.o
$ (MAIN_LINK) -o $@ myfe.o $(LIBR) $(LIBS)

invoked as

R CMD make
R CMD myfe

Even though not recommended, ${R_HOME} may contain spaces. In that case, it cannot be
passed as an argument to include in the makefile. Instead, one can instruct make using the
-f option to include Makeconf, for example via recursive invocation of make, see Section 1.6
[Writing portable packages|, page 55.

all:
$(MAKE) -f "${R_HOME}/etc${R_ARCH}/Makeconf" -f Makefile.inner

Additional flags which $ (MAIN_LINK) includes are, amongst others, those to select OpenMP
and --export-dynamic for the GNU linker on some platforms. In principle $(LIBS) is not
needed when using a shared R library as 1ibR is linked against those libraries, but some platforms
need the executable also linked against them.

Chapter 8: Linking GUIs and other front-ends to R 206

8.1.2 Setting R callbacks

For Unix-alikes there is a public header file Rinterface.h that makes it possible to change the
standard callbacks used by R in a documented way. This defines pointers (if R_INTERFACE_PTRS
is defined)

extern void (*ptr_R_Suicide) (const char *);

extern void (*ptr_R_ShowMessage) (const char *);

extern int (*ptr_R_ReadConsole) (const char *, unsigned char *, int, int);

extern void (*ptr_R_WriteConsole) (const char *, int);

extern void (*ptr_R_WriteConsoleEx) (const char *, int, int);

extern void (*ptr_R_ResetConsole) ();

extern void (*ptr_R_FlushConsole) ();

extern void (*ptr_R_ClearerrConsole) ();

extern void (*ptr_R_Busy) (int);

extern void (*ptr_R_CleanUp) (SA_TYPE, int, int);

extern int (*ptr_R_ShowFiles) (int, const char **, const char *x*,
const char *, Rboolean, const char *);

extern int (*ptr_R_ChooseFile) (int, char *, int);

extern int (*ptr_R_EditFile) (const char *);

extern void (*ptr_R_loadhistory) (SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_savehistory) (SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_addhistory) (SEXP, SEXP, SEXP, SEXP);

extern int (*ptr_R_EditFiles) (int, const char **, const char **, const char *);

extern SEXP (*ptr_do_selectlist) (SEXP, SEXP, SEXP, SEXP);

extern SEXP (*ptr_do_dataentry) (SEXP, SEXP, SEXP, SEXP);

extern SEXP (*ptr_do_dataviewer) (SEXP, SEXP, SEXP, SEXP);

extern void (*ptr_R_ProcessEvents) ();

which allow standard R callbacks to be redirected to your GUL. What these do is generally
documented in the file src/unix/system.txt.

void R_ShowMessage (char *message) [Function]
This should display the message, which may have multiple lines: it should be brought to the
user’s attention immediately.

void R_Busy (int which) [Function]
This function invokes actions (such as change of cursor) when R embarks on an extended
computation (which=1) and when such a state terminates (which=0).

int R_ReadConsole (const char *prompt, unsigned char *buf, int [Function]
buflen, int hist)
void R_WriteConsole (const char *buf, int buflen) [Function]
void R_WriteConsoleEx (const char *buf, int buflen, int otype) [Function]
void R_ResetConsole () [Function]
void R_FlushConsole () [Function]
void R_ClearerrConsole () [Function]
These functions interact with a console.

R_ReadConsole prints the given prompt at the console and then does a fgets(3)-like
operation, writing up to buflen bytes into the buffer buf. The last of the bytes written should
be ‘"\0"’. When there is enough space in the buffer to hold the full input line including
the line terminator, the line terminator should be included. Otherwise, the rest of the line
should be returned in subsequent calls to R_ReadConsole. The last call should return data
terminated by the line terminator. If hist is non-zero, then the line should be added to any

Chapter 8: Linking GUIs and other front-ends to R 207

command history which is being maintained. The return value is 0 if no input is available
and >0 otherwise.

R_WriteConsoleEx writes the given buffer to the console, otype specifies the output type
(regular output or warning/error). Call to R_WriteConsole(buf, buflen) is equivalent to
R_WriteConsoleEx (buf, buflen, 0). To ensure backward compatibility of the callbacks,
ptr_R_WriteConsoleEx is used only if ptr_R_WriteConsole is set to NULL. To ensure that
stdout () and stderr() connections point to the console, set the corresponding files to NULL
via

R_Outputfile = NULL;
R_Consolefile = NULL;

R_ResetConsole is called when the system is reset after an error. R_FlushConsole is called
to flush any pending output to the system console. R_ClearerrConsole clears any errors
associated with reading from the console.

int R_ShowFiles (int nfile, const char *xfile, const char [Function]
xxheaders, const char *wtitle, Rboolean del, const char *pager)
This function is used to display the contents of files.

int R_ChooseFile (int new, char *buf, int len) [Function]
Choose a file and return its name in buf of length len. Return value is 0 for success, > 0
otherwise.

int R_EditFile (const char xbuf) [Function]
Send a file to an editor window.

int R_EditFiles (int nfile, const char **file, const char [Function]
xxtitle, const char *editor)
Send nfile files to an editor, with titles possibly to be used for the editor window(s).

SEXP R_loadhistory (SEXP, SEXP, SEXP, SEXP); [Function]
SEXP R_savehistory (SEXP, SEXP, SEXP, SEXP); [Function]
SEXP R_addhistory (SEXP, SEXP, SEXP, SEXP); [Function]

.Internal functions for loadhistory, savehistory and timestamp.
If the console has no history mechanism these can be as simple as

SEXP R_loadhistory (SEXP call, SEXP op, SEXP args, SEXP env)

{
errorcall(call, "loadhistory is not implemented");
return R_NilValue;
}
SEXP R_savehistory (SEXP call, SEXP op , SEXP args, SEXP env)
{
errorcall(call, "savehistory is not implemented");
return R_NilValue;
}
SEXP R_addhistory (SEXP call, SEXP op , SEXP args, SEXP env)
{
return R_NilValue;
}

The R_addhistory function should return silently if no history mechanism is present, as a
user may be calling timestamp purely to write the time stamp to the console.

Chapter 8: Linking GUIs and other front-ends to R 208

void R_Suicide (const char *message) [Function]
This should abort R as rapidly as possible, displaying the message. A possible implementation
is

void R_Suicide (const char #*message)

{
char ppl[1024];
snprintf (pp, 1024, "Fatal error: %s\n", message);
R_ShowMessage (pp) ;
R_CleanUp(SA_SUICIDE, 2, 0);
}
void R_CleanUp (SA_TYPE saveact, int status, int RunlLast) [Function]

This function invokes any actions which occur at system termination. It needs to be quite
complex:

#tinclude <Rinterface.h>
#include <Rembedded.h> /* for Rf_KillAllDevices */

void R_CleanUp (SA_TYPE saveact, int status, int RunLast)

{
if (saveact == SA_DEFAULT) saveact = SaveAction;
if (saveact == SA_SAVEASK) {
/* ask what to do and set saveact */
}
switch (saveact) {
case SA_SAVE:
if (runLast) R_dot_Last();
if (R_DirtyImage) R_SaveGlobalEnv();
/* save the console history in R_HistoryFile */
break;
case SA_NOSAVE:
if (runLast) R_dot_Last();
break;
case SA_SUICIDE:
default:
break;
}
R_RunExitFinalizers();
/* clean up after the editor e.g. CleanEd() */
R_CleanTempDir () ;
/* close all the graphics devices */
if (saveact !'= SA_SUICIDE) Rf_KillAllDevices();
fpu_setup(FALSE) ;
exit(status);
}

These callbacks should never be changed in a running R session (and hence cannot be called
from an extension package).

Chapter 8: Linking GUIs and other front-ends to R 209

SEXP R_dataentry (SEXP, SEXP, SEXP, SEXP); [Function)]
SEXP R_dataviewer (SEXP, SEXP, SEXP, SEXP); [Function)]
SEXP R_selectlist (SEXP, SEXP, SEXP, SEXP); [Function]

.External functions for dataentry (and edit on matrices and data frames), View and
select.list. These can be changed if they are not currently in use.

8.1.3 Registering symbols

An application embedding R needs a different way of registering symbols because it is not a
dynamic library loaded by R as would be the case with a package. Therefore R reserves a special
DllInfo entry for the embedding application such that it can register symbols to be used with
.C, .Call etc. This entry can be obtained by calling getEmbeddingD11Info, so a typical use is

D11Info *info = R_getEmbeddingDl1lInfo();
R_registerRoutines(info, cMethods, callMethods, NULL, NULL);

The native routines defined by cMethods and callMethods should be present in the embedding
application. See Section 5.4 [Registering native routines|, page 129, for details on registering
symbols in general.

8.1.4 Meshing event loops

One of the most difficult issues in interfacing R to a front-end is the handling of event loops, at
least if a single thread is used. R uses events and timers for

e Running X11 windows such as the graphics device and data editor, and interacting with
them (e.g., using locator()).

e Supporting Tcl/Tk events for the tcltk package (for at least the X11 version of Tk).
e Preparing input.
e Timing operations, for example for profiling R code and Sys.sleep().

e Interrupts, where permitted.

Specifically, the Unix-alike command-line version of R runs separate event loops for
e Preparing input at the console command-line, in file src/unix/sys-unix.c.

e Waiting for a response from a socket in the internal functions for direct socket access in file
src/modules/internet/Rsock.c and for the interface to 1ibcurl.

e Mouse and window events when displaying the X11-based dataentry window, in file
src/modules/X11/dataentry.c. This is regarded as modal, and no other events are serviced
whilst it is active.

There is a protocol for adding event handlers to the first two types of event loops, using
types and functions declared in the header R_ext/eventloop.h and described in comments in
file src/unix/sys-std.c. It is possible to add (or remove) an input handler for events on a
particular file descriptor, or to set a polling interval (via R_wait_usec) and a function to be called
periodically via R_PolledEvents: the polling mechanism is used by the tcltk package. Input
handlers are managed with addInputHandler,getInputHandler, and removeInputHandler.
The handlers are held in a linked list R_InputHandlers.

It is not intended that these facilities are used by packages, but if they are needed exceptionally,
the package should ensure that it cleans up and removes its handlers when its namespace is
unloaded. Note that the header sys/select.h is needed®: users should check this is available
and define HAVE_SYS_SELECT_H before including R_ext/eventloop.h. (It is often the case that
another header will include sys/select.h before eventloop.h is processed, but this should not
be relied on.)

3 At least according to POSIX 2004 and later. Earlier standards prescribed sys/time.h: R_ext/eventloop.h
will include it if HAVE_SYS_TIME_H is defined.

Chapter 8: Linking GUIs and other front-ends to R 210

An alternative front-end needs both to make provision for other R events whilst waiting for
input, and to ensure that it is not frozen out during events of the second type. The ability to
add a polled handler as R_timeout_handler is used by the tcltk package.

8.1.5 Threading issues

Embedded R is designed to be run in the main thread, and all the testing is done in that context.
There is a potential issue with the stack-checking mechanism where threads are involved. This
uses two variables declared in Rinterface.h (if CSTACK_DEFNS is defined) as

extern uintptr_t R_CStackLimit; /* C stack limit */
extern uintptr_t R_CStackStart; /* Initial stack address */

Note that uintptr_t is an optional C99 type for which a substitute is defined in R, so your code
needs to define HAVE_UINTPTR_T appropriately. To do so, test if the type is defined in C header
stdint.h or C++ header cstdint and if so include the header and define HAVE_UINTPTR_T before
including Rinterface.h. (For C code one can simply include Rconfig.h, possibly via R.h, and
for C++11 code Rinterface.h will include the header cstdint.)

These will be set* when Rf_initialize_R is called, to values appropriate to the main thread.
Stack-checking can be disabled by setting R_CStackLimit = (uintptr_t)-1 immediately after
Rf_initialize_R is called, but it is better to if possible set appropriate values. (What these
are and how to determine them are OS-specific, and the stack size limit may differ for secondary
threads. If you have a choice of stack size, at least 10Mb is recommended.)

You may also want to consider how signals are handled: R sets signal handlers for several signals,
including SIGINT, SIGSEGV, SIGPIPE, SIGUSR1 and SIGUSR2, but these can all be suppressed by
setting the variable R_SignalHandlers (declared in Rinterface.h) to O.

Note that these variables must not be changed by an R package: a package should not call R
internals which makes use of the stack-checking mechanism on a secondary thread.

8.2 Embedding R under Windows

This section is only about ‘x86_64’ Windows.

All Windows interfaces to R call entry points in the DLL R.d11, directly or indirectly. Simpler
applications may find it easier to use the indirect route via (D)COM.

8.2.1 Using (D)COM

(D)COM is a standard Windows mechanism used for communication between Windows applicat-
ions. One application (here R) is run as COM server which offers services to clients, here the
front-end calling application. The services are described in a ‘Type Library’ and are (more or
less) language-independent, so the calling application can be written in C or C++ or Visual Basic
or Perl or Python and so on. The ‘D’ in (D)COM refers to ‘distributed’, as the client and server
can be running on different machines.

The basic R distribution is not a (D)COM server, but two addons are currently available that
interface directly with R and provide a (D)COM server:

e There is a (D)COM server called StatConnector written by Thomas Baier available via
https://www.autstat.com/, which works with R packages to support transfer of data to
and from R and remote execution of R commands, as well as embedding of an R graphics
window.

Recent versions have usage restrictions.

4 at least on platforms where the values are available, that is having getrlimit and on Linux or having sysctl

supporting KERN_USRSTACK, including FreeBSD and macOS.

https://www.autstat.com/

Chapter 8: Linking GUIs and other front-ends to R 211

8.2.2 Calling R.d11 directly

The R DLL is mainly written in C and has _cdecl entry points. Calling it directly will be tricky
except from C code (or C++ with a little care).

There is a version of the Unix-alike interface calling

int Rf_initEmbeddedR(int ac, char *x*av);
void Rf_endEmbeddedR(int fatal);

which is an entry point in R.d11. Examples of its use (and a suitable Makefile.win) can be found
in the tests/Embedding directory of the sources. You may need to ensure that R_HOME/bin is
in your PATH so the R DLLs are found.

Examples of calling R.d11 directly are provided in the directory src/gnuwin32/front-ends,

including a simple command-line front end rtest.c whose code is

#define Win32

#include <windows.h>

#include <stdio.h>

#include <Rversion.h>

#define LibExtern __declspec(dllimport) extern

#include <Rembedded.h>

#include <R_ext/RStartup.h>

/* for askok and askyesnocancel */

#include <graphapp.h>

/* for signal-handling code */
#include <psignal.h>

/* simple input, simple output */

/* This version blocks all events: a real one needs to call ProcessEvents

frequently. See rterm.c and ../system.c for one approach using

a separate thread for input.
*/
int myReadConsole(const char *prompt, unsigned char *buf, int len, int addtohistory)
{

fputs(prompt, stdout);

fflush(stdout) ;

if (fgets((char *)buf, len, stdin)) return 1; else return O;

}
void myWriteConsole(const char *buf, int len)
{
printf ("%s", buf);
}
void myCallBack(void)
{
/* called during i/o, eval, graphics in ProcessEvents */
}
void myBusy(int which)
{
/* set a busy cursor ... if which = 1, unset if which = 0 */
}

static void my_onintr(int sig) { UserBreak = 1; }

int main (int argc, char **argv)
{
structRstart rp;
Rstart Rp = &rp;
char Rversion[25], *RHome, *RUser;

sprintf (Rversion, "¥s.%s", R_MAJOR, R_MINOR);

Chapter 8: Linking GUIs and other front-ends to R 212

if (strcmp(getDLLVersion(), Rversion) != 0) {
fprintf (stderr, "Error: R.DLL version does not match\n");
exit(1);

}

R_setStartTime();

R_DefParamsEx (Rp, RSTART_VERSION);

if ((RHome = get_R_HOME()) == NULL) {
fprintf(stderr, "R_HOME must be set in the environment or Registry\n");
exit(1);

}

Rp->rhome = RHome;

RUser = getRUser();

Rp->home = RUser;

Rp->CharacterMode = LinkDLL;

Rp->EmitEmbeddedUTF8 = FALSE;

Rp->ReadConsole = myReadConsole;

Rp->WriteConsole = myWriteConsole;

Rp->CallBack = myCallBack;

Rp->ShowMessage = askok;

Rp->YesNoCancel = askyesnocancel;

Rp->Busy = myBusy;

Rp->R_Quiet = TRUE; /* Default is FALSE */
Rp->R_Interactive = FALSE; /* Default is TRUE */
Rp->RestoreAction = SA_RESTORE;

Rp->SaveAction = SA_NOSAVE;

R_SetParams (Rp) ;

freeRUser (RUser) ;

free_R_HOME (RHome) ;
R_set_command_line_arguments(argc, argv);

FlushConsoleInputBuffer (GetStdHandle (STD_INPUT_HANDLE)) ;

signal (SIGBREAK, my_onintr);
GA_initapp(0, 0);
readconsolecfg();
setup_Rmainloop();
#ifdef SIMPLE_CASE
run_Rmainloop();
#else
R_ReplDLLinit();
while (R_ReplDLLdo1() > 0) {
/* add user actions here if desired */
}
/* only get here on EOF (not q()) */
#endif
Rf_endEmbeddedR (0) ;
return O;

}
The ideas are

e Check that the front-end and the linked R.d11 match — other front-ends may allow a looser
match.

e Find and set the R home directory and the user’s home directory. The former
may be available from the Windows Registry: it will be in HKEY_LOCAL_
MACHINE\Software\R-core\R\InstallPath from an administrative install and
HKEY_CURRENT_USER\Software\R-core\R\InstallPath otherwise, if selected during
installation (as it is by default).

e Define startup conditions and callbacks via the Rstart structure. R_DefParams sets the
defaults, and R_SetParams sets updated values. R_DefParamsEx takes an extra argument,

Chapter 8: Linking GUIs and other front-ends to R 213

the version number of the Rstart structure provided (RSTART_VERSION refers to the current
version) and returns a non-zero status when that version is not supported by R.

e Record the command-line arguments used by R_set_command_line_arguments for use by
the R function commandArgs().

e Set up the signal handler and the basic user interface.
e Run the main R loop, possibly with our actions intermeshed.
e Arrange to clean up.
An underlying theme is the need to keep the GUI ‘alive’, and this has not been done in
this example. The R callback R_ProcessEvents needs to be called frequently to ensure that
Windows events in R windows are handled expeditiously. Conversely, R needs to allow the GUI

code (which is running in the same process) to update itself as needed — two ways are provided
to allow this:

e R_ProcessEvents calls the callback registered by Rp—>callback. A version of this is used
to run package Tcl/Tk for teltk under Windows, for the code is

void R_ProcessEvents(void)

{
while (peekevent()) doevent(); /* Windows events for GraphApp */
if (UserBreak) { UserBreak = FALSE; Rf_onintr(); }
R_CallBackHook();
if (R_tcldo) R_tcldo();

}

e The mainloop can be split up to allow the calling application to take some action after each
line of input has been dealt with: see the alternative code below #ifdef SIMPLE_CASE.

It may be that no R GraphApp windows need to be considered, although these include
pagers, the windows () graphics device, the R data and script editors and various popups such as
choose.file() and select.list (). It would be possible to replace all of these, but it seems
easier to allow GraphApp to handle most of them.

It is possible to run R in a GUI in a single thread (as RGui.exe shows) but it will normally
be easier® to use multiple threads.

Note that R’s own front ends use a stack size of 10Mb, whereas MinGW executables default
to 2Mb, and Visual C++ ones to 1Mb. The latter stack sizes are too small for a number of R
applications, so general-purpose front-ends should use a larger stack size.

Applications embedding R 4.2.0 and newer should use UCRT as the C runtime and opt in for
UTF-8 as the active code page in their manifest, as all frontends shipped with R do. This will
allow the embedded R to use UTF-8 as its native encoding on recent Windows systems.

8.2.3 Finding R_ HOME

Both applications which embed R and those which use a system call to invoke R (as Rscript.exe,
Rterm.exe or R.exe) need to be able to find the R bin directory. The simplest way to do so is
the ask the user to set an environment variable R_HOME and use that, but naive users may be
flummoxed as to how to do so or what value to use.

The R for Windows installers have for a long time allowed the value of R_HOME to be recorded
in the Windows Registry: this is optional but selected by default. Where it is recorded has
changed over the years to allow for multiple versions of R to be installed at once, and to allow 32-
and 64-bit versions of R to be installed on the same machine. Only 64-bit versions are supported
since R 4.2.

5 An attempt to use only threads in the late 1990s failed to work correctly under Windows 95, the predominant
version of Windows at that time.

Chapter 8: Linking GUIs and other front-ends to R 214

The basic Registry location is Software\R-core\R. For an administrative install this is
under HKEY_LOCAL_MACHINE and on a 64-bit OS HKEY_LOCAL_MACHINE\Software\R-core\R is
by default redirected for a 32-bit application, so a 32-bit application will see the information for
the last 32-bit install, and a 64-bit application that for the last 64-bit install. For a personal
install, the information is under HKEY_CURRENT_USER\Software\R-core\R which is seen by both
32-bit and 64-bit applications and so records the last install of either architecture. To circumvent
this, with Intel builds there are locations Software\R-core\R32 and Software\R-core\R64
which always refer to one architecture.

When R is installed and recording is not disabled then two string values are written at that
location for keys InstallPath and Current Version, and these keys are removed when R is
uninstalled. To allow information about other installed versions to be retained, there is also
a key named something like 3.0.0 or 3.0.0 patched or 3.1.0 Pre-release with a value for
InstallPath.

So a comprehensive algorithm to search for R_HOME is something like

e Decide which of personal or administrative installs should have precedence. There are
arguments both ways: we find that with roaming profiles that HKEY_CURRENT_USER\Software
often gets reverted to an earlier version. Do the following for one or both of HKEY_CURRENT_
USER and HKEY_LOCAL_MACHINE.

e If the desired architecture is known, look in Software\R-core\R32 or Software\R-core\R64,
and if that does not exist or the architecture is immaterial, in Software\R-core\R.

e If key InstallPath exists then this is R_HOME (recorded using backslashes). If it does
not, look for version-specific keys like 2.11.0 alpha, pick the latest (which is of itself a
complicated algorithm as 2.11.0 patched > 2.11.0 > 2.11.0 alpha > 2.8.1) and use its
value for InstallPath.

215

Function and variable index

e 126
LCall L 143, 156
Extermal ... 143, 156
Fortran. ... 126

Last.lib. ..o e 51

onAttach.t e 51

onDetach....... i 51

onLoado e 51

0nUNLoad. . ..ottt 51

Random.seedcciiiiiiiiiiiiiiiin., 174
@D L 93
N@CTONYM. .. v vttt ittt 92
NBLiAS oot 84
\arguments ... 86
Nauthor . ..o 87
\BOLd .ot 91
At e 92
\COAE . ittt 91
Ncommand. ...ttt 92
\CONCEPT . .ttt 96
T e e 90
\CRANPRE{PKEY - .o voeeiei e 98
A T | P 94
\describe....... ... 93
\description..............ooiiiiiiiiiiii 85
Ndetails. ...t 86
R i 92
\doi{identifier}.........c.couueiiiiiinnennnnnnnn. 98
Ndontdiff. ..ot 88
Ndontrun.t 87
\dontShoOW. . oottt 87
\donttest. ...t 88
NQOtS et 95
NAQUOTE . . oottt 91
Nemail ... 92
Nemph . ..o 91
DG .« ottt 95
\enumerateooiiiiiiii e 93
=5 2P 92
NEQIL . ot 94
\eXamMPLeS.ttt e 87
NFdguUTe . . o 95
R T = 92
Nformatiiii 89
Nhref .. 92
1 96
NdfelSe . it 96
NitemizZe. ... 93
KD .« 91
A\ReYWOrd.ot 88
NLOtS oot 95
ALK ot 93
NLinKS4CLlass .\ vi et tiee et 93
\method 85
\DAME . .ottt e 84
\newcommandoiiiiitt e 98

DO L ettt 87

NOPEIOM . ot 92
NOUT .« ettt e 96
\packageAuthor.................oiiiiiiiiiannn. 98
\packageDescription............... ...t 98
\packageDESCRIPTIONc.vuiuineinenenennn. 98
\packageIndices...........ooiiuiiiiiiiiinian.. 98
\packageMaintainer 98
\packageTitle...........oooiiiiiiiii i . 98
ADKE - i 92
\preformatted............... 91
R 95
ARAOPLS . ot 97
\referencest 87
\renewcommandouuitinitii i 98
\S3method. .. .vvvi e 86
NSAIMP . . vv ettt 91
\SECEIOM. ¢ vttt 90
\S€eaLlS0. ...ttt 87
NS DT o 97
NSOULCE .« ettt et e e 89
\SQUOtE . ettt 91
\SSPACE . ..ttt 98
\SEXOng . ..o 91
\tabular.............oiiiiiiiii 93
\title ... 85
UL Lo 92
NUSAEE . oottt e 85
AVALUE . ottt e 86
VAL L 92
NVEID Lottt e 91
A

addInputHandler............. ..., 209
ALTREP 170
ALTREP_CLASS e 170
ANY_ATTRIBo e 155
AUTHORS . . oot e e et 17
B

bessel _d....... i 183
bessel _j....ooiiiiii 183
besSSel _ K. ..ot e 183
bessel _y......ooiiiiii 183
beta . . 183
BLAS _LIBS. ... i i i 25
Drowser. i 108

Function and variable index

C

CAAR .. 158
CADAR . .o 157
CADBR ..o 157
CADDDRot 157
CADDR . .ot 157
CADR ..o 157
CallocCharBuf..............ooiiiiiiiiiinn.. 173
CAR .o 157
CDAR . .ottt 158
CDDDR ..ttt 158
£630)0) N 158
CDR .ttt 157
CEMIN ... 186
CHAR ... o 163
choose....... ..o 183
citation........oiiiiiiiiii 17, 80
CleanEd........ ... i 208
CLEAR_ATTRIB..... ... 155
COMPLEX . ..ot 168
COMPLEX_ELT ... e 168
COMPLEX_GET_REGION..................cunn.. 170
COMPLEX_OR_NULL........ .00ttt 170
COMPLEX_RO ...t 168
CONS . 154
COPYRIGHTSo i 6, 17
COSPL o vttt 184
D

dimach...... ... i 190
DATAPTR_OR_NULL....... ..ot 170
DATAPTR_RO 168
AbLepPr ...t 176
Ableprl. ... 176
AEDUG . . v 111
AEDUGEET . .. 110
digamma...........cooiiiiiiiiiii 183
dpsifn............ 183
dump.frames................l 110
DUPLICATE_ATTRIBttt 155
dyn.load. ... 128
dyn.unloadot 128
E

@XP_TaNd.t 174
exXpml 184
@XPOTL . oo 49
exportClasses..............oiiiiiiiiiiii... 54
exportClassPattern.................. 54
exportMethods................. oLl 54
exportPattern.............. . ..o 49, 54

216
F
FALSE .. o 186
findInterval il 189
findInterval2......... ..., 189
FLIBS . o 25
fmax2 185
fmin2o 185
fprec.... ... 185
fpu_setup ...l 208
fround.......... ... 185
fsign.. ... 185
fErunc. 185
G
gammafn......... i 183
getorture 113
getInputHandler................................ 209
GetRNGstate i i 174
I
ilmach........oo o i il 190
imax2...... 185
imin2...... 185
IMPOTt 49
importClassesFrom.......... ..., 55
importFrom 49
importMethodsFrom oo, 55
INTEGER.o s 168
INTEGER_ELTo 168
INTEGER_GET_REGIONooiin. 170
INTEGER_IS_SORTEDcoiiiiniiininn... 170
INTEGER_NO_NA..... ... 170
INTEGER_OR_NULL...........ooiiiiiiiiiiin 170
INTEGER_ROo 168
integr_fn o ool 187
interv.... ... oo 189
Intpr ... 176
intprl.....ooo 176
IS_LONG_VEC 153
IS_SCALAR ... o 153
ISNA 158, 175
ISNAN .. 158, 175
L
1abelPr. 176
LAPACK_LIBS ...ttt 26
Ibeta ... 183
IbEgsb . 187
Ichoose.............oiiiiiii i 183
LCONS .ottt e 154, 160
LENGTH.o e 162
lgammalp. ... 184
Igammafn. ... 183
library.dynam............ccoouunnnnnnnnnnn. 14, 128
1ogImeXp. ..o 184
1ogIp 183
L1OgIPEXD . vttt 184
loglpmX. ..o 184
LOGICALttt e 168
LOGICAL _ELT ...ttt i 168

LOGICAL_GET_REGION.............. 170

Function and variable index

LOGICAL_NO_NA..... ..o
LOGICAL_OR_NULL........ ..ot
LOGICAL_ RO ...
logspace_add.............ooiiiiiiiii i
logspace_sub.............ooiiiiiiiiiiii
logspace_Sum............coiiiiiiiiininnnnnnnnnn..

NO_REFERENCESottt
NOYM_YaNd . ..ottt ettt et e e
NOT_SHAREDottt et e e

O

OBJECTS ...t
optimfn.....
OPELIMET . ..

P

PeNtaGammMaottt
PKG_CFLAGSt
PKG_CPPFLAGS
PKG_CXXFLAGSo
PKG_FCFLAGS e
PKG_FFLAGS s
PKG_LIBS. ... i e
PKG_OBJCFLAGS
PKG_OBJCXXFLAGS....... ... i

PTOMPt ..o
PROTECT
PROTECT_WITH_INDEXooiiiiiiinnnnn,

217
R
RCMD build.......coiiiii it 43
RCMD CheCK ...ttt e 40
RCMD config.......ooovvviii 22
RCMDRA2pdf o 99
RCMD RACONV ..ottt 99
RCMD SHLIB . ..ottt ettt e et 137
R CMD Stangle.............coeeeeeeinnnnnnneennn.. 99
RCMD SWeaVE ..ottt ittt i e 99
R_ActiveBindingFunction...................... 154
R_addhistory.......ccoviiiiiiiiiiiiiiiinnnn, 207
R_@l10C . i e 146, 172
R_@l10CLD .ottt 172
R_altrep_datal.........ccoiiuiiiiiniinnennnnnn. 170
R_altrep_data2............... ...t 170
R_atof ... 190
R_BindingIsActive 154
R_BindingIsLocked 154
RBUSY ... 206
R_BytecodeExpr..............l 151
R_CalloC. .ottt e e 173
R_CHAR ...t 163
R_check_class_etC......ovuiiiinneuneunnennn.. 150
R_CheckStack........cooiiiiininiiiiiiinen.. 192
R_CheckStack2...........iiiiiiiiiiiiinannn 192
R_CheckUserInterrupt.......................... 192
R_chk_calloCooiiiiii it 173
R_chk_freeoiiiiiiiiiiinnn.. 173
R_chk_realloCvuuiiiii i 173
R_ChooseFilecoiiiiiin i 207
R_CleanTempDir...............oiiiiiiiiii .. 208
R_CleanUp ...t 208
R_ClearerrConsoleovvivinvnnennnn... 206
R_ClearExternalPtr.................iiuinin.n. 166
R_ClosureBody.............ooiiiiiiiiiiinn.. 151
R_ClosureEnv............oiitininiiiinnnanan.. 151
R_ClosureExpr.................cooiiiiiiii... 151
R_ClosureFormalsc.uvirininuninnnnnnn. 151
R_compute_identical................ooiiinnn. 154
R_ContinueUnwind ciiiinon.. 191
BRGSOt . et 188
R_dataentry............... 209
R_dataviewer............ccoiiiriiiiinnnnanan.. 209
R_DefParamscovvvitt it 212
R_DefParamsExXo, 212
R_DimNamesSymbolc.covviiiiiiinnnnn.. 149
R_do_MAKE_CLASS.o 150
R_do_new_object..........coiiiiiiiiiiiiiiii 150
R_do_Slot ..oiiii i e 150
R_do_slot_assignc.couuuiiiuinnnnnnnn. 150
R_dot_Lastcoviiiiiiiii i, 208
R_EditFile 207
R_EditFiles ...t 207
R_EnvironmentIsLocked......................... 154
R_ExecWithCleanupcooiiinnnnn. 191
R_existsVarInFrameccvinin.n. 154
R_ExpandFileNamecooiiiiiiinnnnnnnn. 190
R_ExternalPtrAddrccoviiiinninnn.. 166
R_ExternalPtrAddrFn..............coovvinenn.. 166
R_ExternalPtrProtected........................ 166
R_ExternalPtrTagoooiiiiii.. 166
R_FindNamespace.................coiiiiiiiiian.. 154
R_FindSymbol........ ..., 137

R_FINITE. i 175

Function and variable index

R_FlushConsole.........c.uuuiiniiinennnnennnnn. 206
R_forceAndCall............coiiirinininininnnnn. 154
R_forceSymbols...............oooiiiiiiiiii.. 132
R _Free .. i 173
R_free_tmpnam................... 189
R_GetCCallable..........coviiiiriniiinnnnn, 136
R_getClassDef..........., 150
R_GetCurrentEnv............coiiiiirnninennn.. 160
R_GetCurrentSrcref 165
R_getEmbeddingDl1lInfo.............ccovuinni... 209
R_GetSrcFilenameccooiiinunnn.. 165
R_getVar.......... ... 152
R_getVarExo, 152
R_GetXllImage..............oooiiiiiiiiiiiin.. 196
R_has_slot ...t 150
R_InitFileInPStream............ccovuuivrnnennn. 193
R_InitFileOutPStream.................c.uuu.n. 193
R_InitInPStream...............cciririninennn.. 193
R_InitOutPStreamccovinivinnennnn... 193
R_INLINE. e e 194
R_InputHandlers................................ 209
R_Interactive.........c.vviiiniiineiinennnennn. 204
R_IsNamespaceEnvc.cvviiiiiinnnnnnnn. 154
R_iSDnancppcoviiiiiiiiiiiiiiii i 158
RoIsNaN . .ttt 175
R_dSOort . . i 188
R_IsPackageEnv.............., 154
R_LIBRARY _DIR........ciiiiiii i, 23
R_loadhistory............... ... 207
R_LockBinding............. ..., 154
R_LockEnvironmentcoooiiinn... 154
R_1sInternal3...........c.iiiiirinininnnnnnn. 154
R_MakeActiveBinding........................... 154
R_MakeExternalPtrccovvinivinnvenn.. 166
R_MakeExternalPtrFn........................... 166
R_MakeUnwindContcivirininrnnnn.. 191
R_MakeWeakRefcovviiiiiinnennnnn.. 167
R_MakeWeakRefC..........coviiiirininiinnnnnn. 167
R_max_col ... 189
R_mKCloSUTeoviit it 151
R_NamespaceEnvSpec............................ 154
R_NamesSymbol..........., 149
R_NegInf... ..ottt 175
R _NeWENV. .. e 152
R_NewPreciousMSetcciririninnn.. 145
R_NilValue ...ttt it 151
R_orderVector, 188
R_orderVectorl.......... ..., 188
R_PACKAGE_DIRottt 21, 23
R_PACKAGE_NAME i 21, 23
R_PackageEnvName 154
R_ParentEnv..............ooiiiiiiiiinnnnnnnnn.. 154
R_ParseEvalString 165
R_ParseString.................. i 165
R_ParseVector..........ccoiiiiiiiniiinnnnnnnnn. 165
R_PolledEvents..........coiiiiiiininininnnnnnnn. 209
R_PosInf..... ..o 175
R POW .« 183
Ropow_di....ooovviiii 183
R_PreserveInMSet, 145
R_PreserveObjectooiiiinio.... 145
R_ProcessEvents..........ccoiiiiiininininennn.. 213
R_ProtectWithIndexcovu.n. 145
Rogsort.........o o i i 189

R_gsort_int........... ool 189

218
R_gsort_int_I.................................. 189
R_gsort_T ... 189
R_ReadConsole........coiiiiiriniiiiiinnnnnn 206
R_RealloC ...ttt 173
R_RegisterCCallable...........ccovuiinnnnnnnn. 136
R_RegisterCFinalizer.......................... 166
R_RegisterCFinalizerEx........................ 166
R_RegisterFinalizer.....................oounn. 166
R_RegisterFinalizerEx......................... 166
R_registerRoutines............... 130
R_ReleaseFromMSetcoviirinininnnnn.. 145
R_ReleaseObject.......... ..., 145
R_removeVarFromFrame..................ccoooun.. 154
R_ReplDLLdol........ i, 204
R_ReplDLLInit.........oiiiiniiiiiiiiiiiinnnn, 204
R_Reprotectooiiiiiiiiiii . 145
R_ResetConsole.ooiiiiiinniiiiannnn, 206
R_rSOrt . . 188
R_RunExitFinalizers............cooviunennnennn. 208
R_RunPendingFinalizers........................ 208
R_RunWeakRefFinalizer......................... 167
R_SaveGlobalEnv.........c.coviiieiineennnennnnnn. 208
R_savehistory................ol 207
R_selectlist......cooiiiiiiniiiiiinan., 209
R_Serializeoviiriiiiniineiinennennnnnn 193
R_set_altrep_datal......................... ... 170
R_set_altrep_data2............................ 170
R_set_command_line_arguments................. 211
R_SetExternalPtrAddr.......................... 166
R_SetExternalPtrProtected.................... 166
R_SetExternalPtrTag...........coviuninnnnnnnn. 166
R_SetParamsc.vtirininiiinnn, 212
R_setStartTime....... ..ot 211
R_ShowFilescovviiiiiiine i 207
R_ShowMessage.....................ooiiii... 206
R_Srcref e 165
Rostrtod. ... 190
R_Suicide ...t 208
R_TempDirot 204
R_tmpnam.ouuuiiiiiiiiiiiies 189
R_tmpnam2 ... 189
R_ToplevelExXecC...........ooiiiiiiiiiiiinnn... 191
R_tryCatcho 191
R_tryCatchError......... ..o, 191
R_tryEvalo 191
R_tryEvalSilent............cciiiiiiiiinninnnnn. 191
Rounif_dindexooiiiriniiinan. 174
R_unLockBinding................. 154
R_Unserialize........couiiiinniinennnennnnnnns 193
R_UnwindProtect.......... ..o iniininnnnn.. 191
R_useDynamicSymbols............coiiiinnnnn.. 132
R_Versionooviiiiiiiii i 193
R _Wait _USeCoiiiii e 209
R_WeakRefKey.......... ..o it 167
R_WeakRefValue..........cooviiiiiinennnnnnnnnn. 167
R_withCallingErrorHandler.................... 191
R_WriteConsole..........ooiiniininiiiinnnnnnnn. 206
R_WriteConsoleExXcoiiiiiniinninnn... 206
RAW 168
RAW _ELT ..o e e e 168
RAW_GET_REGION....... .ottt 170
RAW_OR_NULLot 170
RAW RO ..ot e 168
FChRUST . oot 192
Rdgagi..............ooi 187

Function and variable index

Rdqags ... 187
REAL . o e 168
REAL _ELT. .. e e e 168
REAL_GET_REGION....... ..ot 170
REAL_IS_SORTED...... ..ottt 170
REAL _NO_NA .. e 170
REAL_OR_NULLttt 170
REAL _RO. ... e e 168
realpro 176
realprl. ... 176
By =Y o= ol 111
removelnputHandler 209
REprintf..t 176
REPROTECT ..ottt e et et 145
REvprintf o i 176
TeXAt e 174
Rf_allocC3DArray. ... 146
Rf_allocArray.........ccooiiiiiiiiiiinnannnnn.. 146
Rf_allocLang.........c.uuuiiiunnnnninnnnnnnn 160
Rf_allocList ..., 150, 160
Rf_allocMatrixX........c.coviriiiiinnnnanan.. 146, 163
Rf_allocS40bject ...t 150
Rf_allocVector........coviiiiiininiinnnnnn, 146
Rf_any_duplicated.................... 154
Rf_any_duplicated3.............c.c.ooiiiiinnnn. 154
Rf_asBboolttt 153
Rf_asChar ...t 153
Rf_asCharacterFactor...............ccoivunn.. 153
Rf_asComplexXc.cuuviiiiiiiiiiiiniinnnnnnnn. 153
Rf_asInteger.......... ..., 153
Rf_asLogicalcoiiiiiiiiiinnnnn. 153
Rf_asRboolean..........ouiiiiinininiinnnnnan. 153
Rf_asReal ..., 153
RE_asS4 . . 150
Rf_charIsASCII..... ..ottt 169
Rf_charIsLatinl..............oiiiiiinininanan.. 169
Rf_charIsUTF8.......ciiiiiiiiii it 169
Rf_classgets......cooiiiiiiiiiiiiiiiiiiinnn. 150
Rf_coerceVector..........coiiiiiiiiininennn.. 147
RE oM . ittt 154
Rf_copyListMatrix............................. 154
Rf _copyMatrix...................l 146
Rf_copyMostAttrib........... ...t 146
Rf_copyVector................ ...l 146
REf_CPSOTt ..o 188
Rf_defineVar.............ooiiiiiiiiiinnnnan.. 152
Rf_dimgets ... 149
Rf_dimnamesgets.................l 149
Rf_duplicate.........cooiiiiiiiiiiinnnnn.. 155
Rf _duplicated...................l 154
RE_elt . i 154
Rf_endEmbeddedR..............cooviiiiiinnannnn. 204
Rf_error. . e 173
Rf_errorcall............cooiiiriniiiiiiinnnnan., 173
Rf_eval. ..o 158
Rf_findFun i 158
Rf_GetArrayDimnames........................... 149
Rf_getAttrib......o 149
Rf_getCharCE....... ..o 169
Rf_GetColNames..........oviiiiinenininnnnnnnn, 149
Rf_GetMatrixDimnames..............coueevunnn.. 149
Rf_GetOptionl................... ...t 154
Rf_GetOptionWidth 154
Rf_GetRowNames...........covviiiiinnennnnnnnnn. 149
Rf_dnherits, 154

219
Rf_initEmbeddedRcoiiviiinn. 204
Rf_initialize R.......... ..., 203
Rf_installt 149
Rf_installChar.................t 150, 152
Rf_installTrCharcirininiiniinnnn.. 150
REf_APSOrt ... 188
Rf_isArrayo 153
Rf_isBlankStringccoviiiiiinnnnnn. 153
Rf_isComplex.........oooiiiiiiiiiiiinnaa.. 147
Rf_isDataFrame............ccuviieinennnennnnn. 153
Rf_isEnvironment 147
Rf_isExpression............ ..., 147
RE_isSFactoroviiiin it 153
Rf_isFunction..............o i, 153
Rf_isInteger........ccoiiiiiiiiiiiiiiiiinnn. 147
Rf_isLanguage................ooviiiiiiiii... 153
Rf_isList ..ot 153
Rf_isLogicalccoiiiiiiiiiiiiiiiiiinnn, 147
35] -1 v ol RO 153
Rf_disNewListooiiiiii i 153
Rf_dsNull i 147
Rf_isNumbercoiiiiiiniiiniinennnnn. 153
Rf_disNumeric..........couiiirininiiiinanan. 153
RE_ASODFECE vttt e 153
Rf_isOrdered...........ciiiiiiinninnnnnnn. 153
Rf_disPairList........couiiiinininiiiinn, 153
Rf_isPrimitive.......... ..., 153
Rf_isRealooiiiiiiieiiiie i 147
RE _iSS4 .. . e 153
Rf_isString....... i il 147
RE_1SSymbolooinitii i 147
RE A8 S . i 153
Rf_isUnordered..............cooiiiriiiiinnnnnn.. 153
Rf_isUnsorted............ccoiviiiiiiinnennnnn.. 154
Rf_disVector ..., 153
Rf_isVectorAtomic, 153
Rf_isVectorizablecovveiinnnn.. 154
Rf_isVectorList..........cooniiiirinininnennn.. 153
Rf_KillAllDevicescoviiiiiininenennnnn.. 208
REf_langl.. ...ttt 154
Rf_1ang2. ... 154
Rf_1ang3. ... 154
RE_1angd.ottt 154
Rf_langb........ 154
Rf_1ang6.......ccovuiiiiiiiiiiiiiiii 154
Rf_1astElt ... 154
RE_1COMS . it e 154
Rf _length o i 162
Rf_lengthgets.........ccooviiiiiiiiiiiinin... 146
RE_distl. .. e 154
RE_dist2. .. e 154
Rf_1ist3.. . e 154
RE_distd. .. 154
RE_1isth. .. e 154
Rf_1istB. ... e 154
Rf_listAppend................ 154
Rf_mainloop..........coiiiiiiiiiiii i 203
Rf_match. ...t 154
RE_mMKChar et e 151
Rf_mkCharCEt 169
Rf_mkCharLen........c.ovuuniiineinenenennn. 151
Rf_mkCharLenCE............coiiitirininnnnn.. 169
Rf_mkNamedcirininiiiiiinanan.. 150
Rf_mkString...........o il 153

Rf _namesgets..........ccoiiiiiiiiiiiiiiiii 149

Function and variable index

RE _NCOLS. . it 172
Rf_nlevelsoviiiiiiniiieiie i 154
RE D OWS . .ottt et 172
Rf_nthedr ... 154
Rf_onintro 213
Rf_PairToVectorList..........coooviiinnneaon.. 154
Rf_pmatchcooiuiiiiiiiiiiii i 154
Rf_PrintValue.......... ..o, 121
REf_protectoiiiiiiiiiiiiiiii . 144
Rf_psmatch........ ... 154
Rf_reEnc. ... 169
Rf_revsort i 188
RE_rPsort ... 188
Rf_ScalarComplexcoviiiiinniaa.n. 153
Rf_ScalarIntegerc.coviiiiiiinnnnnnnnn 153
Rf_ScalarLogicalcoiiiiiiiinnnnnnnn. 153
Rf_ScalarRaw........cooiuiiiininiiiiiananan., 153
Rf_ScalarReal..........couiiiirininiinnnnnan. 153
Rf_ScalarString...........ccoiiiiiiiiiiiinnnnn. 153
Rf_setAttrib........ ... 149
Rf_setVar i, 152
Rf_shallow_duplicate.......................... 155
Rf_str2type...........l 154
Rf_StringBlank..............cooiiiiiiiiii.. 153
Rf_StringFalse...............ooiiiiiiiii., 153
Rf_StringTrue................, 153
Rf_topenvoooiiiiiiiiiiiiii 154
Rf_translateCharcciiiininn.. 168
Rf_translateCharUTF8.................c.cun.n. 168
Rf_type2char...........ooiiiiiiiiiiiiiinnnn. 154
Rf_type2str......... ool 154
Rf_type2str_nowarn............................ 154
Rf_unprotect.......... ... il 144
Rf _unprotect_ptrl 145
Rf_VectorToPairList...............couivin.n.. 154
Rf_warning i 173
Rf _warningcall...............ooiiiiiiiiiiiie. 173
Rf_warningcall_immediate..................... 173
Rf_xlengthl 73
Rf_xlengthgets............. ...t 146
RiconvV.. ...t 190
Riconv_closettt 190
Riconv_open........... i 190
rmultinomoouiiii 182
Rprintf 176
Rprof 101, 103
Rprofmem....... ... 104
rsort_with_index 188
Rtanpi.......... 184
run_Rmainloop................... ...l 204
Rvprintf.... ... oo i 176
£ o + P 174
S

1S T 0 0 o Y o 172
S realloC it 172
S3method.ot e 50
SAFE_FFLAGS e 26
SAMAIL . ottt e 187
SET_COMPLEX _ELT.......cci i 168

SET_INTEGER_ELT........... ..., 168

220
SET_LOGICAL_ELT........ ..., 168
SET_RAW_ELTot 168
SET_REAL_ELTo 168
SET_STRING_ELT............coiiiiiiiiiinn.. 151
SET_TAG. ... 160
SET_VECTOR_ELT.......coviiiiiiiiiiiiiin 168
SETCADAR.ttt 158
SETCADDDR i 158
SETCADDR. . ..ot 158
SETCADR . .ottt e 158
SETCAR 158
SETCDR . ..o 158
setup_Rmainloop................l 211
SHALLOW_DUPLICATE_ATTRIB..................... 155
SIgI 185
signrank_free............... ool 182
sinpi...... 184
STRING_ELT ... i 151
STRING_IS_SORTEDccoiiiiiiiiiiiiin... 170
STRING_NO_NA 170
STRING_PTR_RO..... ... 168
summaryRprof il 103
SYSBeM. ... 126
system.time........ol 126
system2........ ... 126
T
TAG .o 158
tanpi . . 184
tetragamma ...l 183
BLACE L ettt e 112
traceback 109
TraCemMem. . ..ottt 104
trigamma........... ... 183
TRUE ... 186
TYPEOFo 158
U
UNAEDUG. . oo v 112
unif_rand oo ool 174
UNPROTECTo s 144
UNPROTECT_PTR....... ..o 145
UNEYACEMemMottt 104
useDynLib....... 51
\Va
VECTOR_ELT ... s 168
VECTOR_PTR_RO....... ... 168
VIAKEET . o oottt 172
VIAXSEE . ittt 172
VIMMATL Lo v e 186
\%\%
wilcox_free........... il 182
X
XLENGTH. . ..o e 73

API index

221

Entry points and variables listed in this index and in header files listed here are intended to be
used in distributed packages and ideally will only be changed after deprecation.

A

ANY _ATTRIB ..ttt e 155
B

bessel _d.o 183
bessel _j.....oooiiiiii 183
bessel _K..oiii 183
bessel _y.. ..o 183
Deta . 183
C

CAAR .o 158
CADAR . .o 157
CADBR . .ot e 157
CADDDR . .ottt e 157
CADDR . .ottt 157
CADR .ttt 157
CAR o 157
CDAR . . e 158
CDDDR . .ottt e 158
[630]0) 158
(03] O 157
CEMIN 186
CHAR ..o 163
ChoOSE . ..o e 183
CLEAR_ATTRIBciiiiii e 155
COMPLEX . .ot e e e e 168
COMPLEX _ELT ..ottt e e et i 168
COMPLEX_RO ..ottt et e 168
CON S .t e 154
COSPL .ot 184
D

dimacho e 190
DATAPTR_RO . ..ottt 168
digamma............. ... i 183
dpsifn......... 183
DUPLICATE_ATTRIBottt 155
E

EXP_TANA. ..ottt 174
expml 184

F

FALSE .. o 186
findInterval 189
findInterval2............ i, 189
fmax2...... ... 185
fmin2 185
fprec... .. 185
fround....... 185
fsign... ... 185
fErunc. ... 185
G

gammafn. 183
GetRNGstate ... 174
|

ilmach. ... 190
AMAX2 .o 185
Imin2. ... 185
INTEGER.o s 168
INTEGER_ELT 168
INTEGER_ROo 168
integr_fn ... 187
Interv......oooo il 189
ISNA L 158, 175
ISNAN .ot 158, 175
L

Ibeta . ot 183
Ibfgsb. ... 187
1Ch00SE . ottt 183
LCONS ..ottt 154, 160
LENGTH. e 162
lgammalp.oveeii 184
Igammafn. ... 183
LOGIMERD .« oottt et 184
1oglp . oo 183
10gIPeXD . ot 184
1ogIpmX . o 184
LOGICAL i 168
LOGICAL_ELT ...ttt i 168
LOGICAL_RO ..ot s 168
logspace_add...........oooiiiiiiiiiiiiiii 184
logspace_sub............... il 184
L1OGSPACE _SUM . .t ettt e it 184
M

M E 185
M PT o 185
MARK_NOT_MUTABLE, 155
MAYBE_REFERENCEDt 155

API index

N

NA _REAL . .. e e e 175
o111 1 o 186
NO_REFERENCESot 155
NOYM_Tandottt e 174
NOT_SHAREDttt et 155
O

optimfn.............o 186
optimgr ... 186
P

Pentagammattt 183
POWID oo 183
PRINTNAME . .. e et 158
PROTECT ..ottt e e e e et 144
PROTECT _WITH_INDEXcoiiiniiiniiinnnnn. 145
psigamma........... i 183
PutRNGstate ...t 174
R

R_2ll0C .. e 146, 172
R_alloCLD ...t e 172
R_atof .. e 190
R_BytecodeExpr..............l 151
R_CalloC. ..ottt e 173
R_CHAR ... e e 163
R_CheckStacKkovviiiiieiie i, 192
R_CheckStack2.......coiiiiiii it 192
R_CheckUserInterrupt..................coounn.. 192
R_ClearExternalPtr.............. ..., 166
R_ClosureBody.............cooviiiiiiiiiiinn... 151
R_ClosureEnv..........ccouiiiininiiiinnanan., 151
R_ClosureExpr............coiiiiiiiiiiiniinnn.. 151
R_ClosureFormalsc.vivininnunennnn.. 151
R_ContinueUnwindcoiiiinnennn.... 191
R CSOTt . 188
R_DimNamesSymbolccoiviiiiiinn.. 149
R_ExecWithCleanup..................ccooiinnnnn. 191
R_ExpandFileNamecovviiiiinnnnnnnn. 190
R_ext/Arith.h..... ..., 158
R_ext/BLAS.ho 181
R_ext/Boolean.h.............ccoviiiiiinnennnnn. 186
R_ext/Complex.h.........oooiiiiiiiiiiiiin... 126
R_ext/Constants.hcoiiiiniinninn.. 186
R_ext/Error.h.. ...t 171
R_ext/Lapack.h.......... 181
R_ext/Linpack.h........... ...t 181
R_ext/Memory.h......, 196
R_ext/Random.h............cuiiuiiiininnnnn... 196
R_ext/Riconv.h..........cooiiiiiiinnnniinnn.. 190
R_ext/Visibility.h.......... ...t 135
R_ExternalPtrAddrc.ciinininon.. 166
R_ExternalPtrAddrFn........................... 166
R_ExternalPtrProtected........................ 166
R_ExternalPtrTagcooiiiiiiiiii.. 166
R_FindSymbol........ ..., 137
R_FINITE. ... e e 175
R_forceSymbols........... ..., 132
R_Free . . o 173

R_free_tmpnam.................................. 189

222
R_GetCCallable.........c.cvuuiiniiiininnnnennnnn. 136
R_GetCurrentSrcref 165
R_GetSrcFilenamecoiniiiinrnnnn.. 165
RogetVar.o 152
R_getVarEx ... 152
R_INLINE. et e e 194
R_iSnancppooviiiiiiii i 158
R_IsNaN.o et e 175
R _disSOrt .. i 188
R_MakeExternalPtrccoviniinnennn.. 166
R_MakeExternalPtrFn........................... 166
R_MakeUnwindContciviirininnnnnn.. 191
R_MakeWeakRefccoiiiiiiiinnennnnn.. 167
R_MakeWeakRefC..........oiiiiiin i, 167
R_max_col e 189
R_mKCloSUTeviti et 151
R_NamesSymbol.................. 149
R NegInf....ooooiiiiiiii 175
R_NeWENV. ...t i 152
R_NewPreciousMSetcoiiirinininnnn.. 145
R_NilValue ...t 151
R_orderVector........coviiiiniiiniinnanennn, 188
R_orderVectorl........ ..., 188
R_ParentEnv............ i, 154
R_ParseEvalString 165
R_ParseString.................. 165
R_ParseVector............c.iiiriniiiinnnnnann 165
R_PosInf.....oooiiiiiiii i 175
R POW . 183
Ropow_di........ooiiiii i 183
R_PreserveInMSetcoviiiiiiinennnn. 145
R_PreserveObjectcoiiiiiiii.. 145
R_ProtectWithIndexcvou... 145
Rogsort.... .o 189
R_gsort_int............ ool 189
Rogsort_int_I.......... i, 189
Rogsort_T ... 189
R_RealloC ..ot 173
R_RegisterCCallable..................ooviinn. 136
R_RegisterCFinalizer.......................... 166
R_RegisterCFinalizerEx........................ 166
R_RegisterFinalizer........................... 166
R_RegisterFinalizerEx......................... 166
R_registerRoutines......................... ... 130
R_ReleaseFromMSetcciiiiniininn.. 145
R_ReleaseObject.........cooviiiiiiiiininnna... 145
R_Reprotect ool 145
R rsort. ..o 188
R_RunWeakRefFinalizer......................... 167
R_SetExternalPtrAddr.......................... 166
R_SetExternalPtrProtected.................... 166
R_SetExternalPtrTag..........cooviinnnnnnnnn. 166
R_ShowMessage.....................oooiii... 206
R_strtod....... ... 190
R_tmpnam.ouuuuiniiiiiiiiia 189
R_tmpnam2 ... 189
R_ToplevelExXecC...........ooiiiiiiiiiiiinni... 191
R_tryCatcho 191
R_tryCatchError...........ccoiviiiiiiinnnnnnnnn. 191
R_tryEvalo 191
R_tryEvalSilent.......... ..o, 191
Rounif_dindex........coiiiiininiiiinn., 174
R_UnwindProtect.................iiiiiiniin... 191
R_useDynamicSymbols............cooiiiinnnnnn. 132
R_Versionc.iuiniii i, 193

API index

R_WeakRefKeycooviriiiiiiiiiiniiennnn. 167
R_WeakRefValue.................ciiiiininaan.. 167
R_withCallingErrorHandler.................... 191
RAW Lt 168
RAW _ELT . .. e et 168
RAW_RO ... i e e 168
RAQAgi ..ot 187
Rdqags ... 187
REAL . . e 168
REAL _ELT. ... e e 168
REAL _RO. ... e e e 168
REprintf..... ... o i 176
REPROTECT ... oottt e e et 145
REvprintfl 176
Rf_alloc3DArray........ooviiiiiniiiiinnnnann.. 146
REf_alloCATrray....oovviiiie i 146
Rf_alloclang........c.couviiiiiiiiniininnnnnnnnn. 160
Rf_alloclistcooiiiiiiiiinaain. 150, 160
Rf_allocMatriX.....covviiiiiinnennnnnnnnn. 146, 163
Rf_allocVector........coviiiiininiiiinnnnnn, 146
Rf_asBbool ...t 153
Rf_asChar ..ot 153
Rf_asCharacterFactor.......................... 153
Rf_asComplex.........cooiiiiiiiiiiiiiiin., 153
Rf_asInteger....... ... 153
Rf_asLogical.........ccoiiiiiiiiiiiiiiinnnnnnn. 153
Rf_asRboolean..............uuiiinininennnnnnnnn 153
Rf_asReal ..ottt 153
Rf_classgets......ccoiiiiiiiiiiiiiiiiiiinnn. 150
Rf_coerceVector..........cooiiiiininnnennn.. 147
RE oM . ittt 154
Rf_copyMatrix................l 146
Rf_copyMostAttrib.................. 146
Rf_copyVector........coiiiiiiiiiiiiiiininnn... 146
RE_CPSOTt ..ot 188
Rf _defineVar.........., 152
Rf_dimgetsooiiiiiiiiiiiiii i 149
Rf_dimnamesgets............ccoiiiiiiiiiiiiii.. 149
Rf_duplicate.............. oo i 155
RE Lt .o 154
Rf_error. . . i e 173
Rf_errorcall............cooiiininiiiiinnnnann, 173
RE_eval.....ooiiii e 158
Rf_findFun 158
Rf_GetArrayDimnames........................... 149
Rf_getAttrib......o 149
Rf_getCharCE....... ... 169
Rf_GetColNames..........oviiiiireninennnnnnn, 149
Rf_GetMatrixDimnames..............coveervnnn.. 149
Rf_GetOptionl............... oiiitt. 154
Rf_GetOptionWidth 154
Rf_GetRowNames...........covviiiiinnennnnnnnnn. 149
Rf_dinheritsi i, 154
Rf_dnstall 149
Rf_installChar............coviineunnnnnn. 150, 152
Rf_installTrCharccoirininininnnn.. 150
REf_iPsSOrt ... 188
Rf_isArrayo 153
Rf_isComplexXuuuiiiiiiiiiiiiinnnnnn 147
Rf_isDataFrame.............c.uuiiirininunnnnnnn. 153
Rf_isEnvironmentcooviunneeonn. 147
Rf_isExpression............ccoiiiiiiiiiiinnnnn. 147
Rf_disFactor.......... ..., 153
Rf_isFunction.........coiiiiniiineineinennn. 153

Rf_isInteger.........ccoiiiiiiiiiiiiinnnnnnn. 147

223
Rf_isLanguage.................................. 153
Rf_isList ..ot 153
Rf_isLogical........ccoiiiiiiiiiiiiiiiinnn. 147
Rf_disMatrix......cooiniinini i 153
Rf_disNewListooviiiiiii i 153
Rf_dsNull i 147
Rf_disNumbercoiiiiiiniiiniinnnnnnn. 153
Rf_dsNumeric..........couirinininiiiianan., 153
Rf_isObject ... 153
Rf_isOrdered...........ciiiiiiinninnnnnnn. 153
Rf_disPairList....... .o, 153
Rf_isPrimitive.......... ..., 153
Rf_isRealcoiiiiiiiie i 147
RE_isSS4 . . . e 153
Rf_isString...........l 147
RE_ISSymbolooinutii i 147
RE _ASTS . i 153
Rf_isUnordered........... ..o, 153
Rf_isVector.......ccoiiniiiiii i 153
Rf_isVectorAtomico, 153
Rf_isVectorList..........ciiiiiiiiinnan.. 153
REf_langl... ..ottt 154
Rf_1ang2. ... 154
Rf_1ang3. ... 154
RE_1angd.ttt 154
Rf_langb........ i 154
Rf_1ang6........ccoviuiiniiiiiiiiiiiii 154
Rf_lastElt ...t 154
RE _1COMS . i e 154
Rf _length i 162
Rf_lengthgets........cooiiiiiiiiiiiiininn... 146
RE_distl. . . e 154
RE_dist2. ... 154
Rf_1ist3.. . e 154
RE_1istd. . . 154
RE_1isth. .. 154
REf_1istB. ... e 154
RE_mMKCharot e 151
Rf_mkCharCEt 169
Rf_mkCharLen.........oviuiiiineineiineinennn. 151
Rf_mkCharLenCE............oiitiriniinnnnn., 169
Rf_mkNamedciriniiiiiiiinann.. 150
Rf_mkString.......... oo il 153
Rf _namesgets..........cciiiiiiiiiiiiiiiiii 149
REf _NCOLS. .. i e 172
R DT OWS . oottt it 172
Rf_nthedr 154
Rf_onintr i 213
Rf_PrintValue...........cooiiiiiiiiininnnnnn. 121
Rf_protect i 144
Rf_reEnc....... ... 169
RE_revsortot 188
RE_TPSOTt ..o 188
Rf_ScalarComplexcoiviiiinnnnannn. 153
Rf_ScalarIntegercoviiiiiiinnnnnnnn. 153
Rf_ScalarLogicalccovviiiiiiinnnnnnnn. 153
Rf_ScalarRaw..........ccouiiriniiiiinnnanan.. 153
Rf_ScalarReal..........c.oviiiiiiiininennnnnnn. 153
Rf_ScalarString...........ccoiiiiiiiiiinnnnnnn. 153
Rf_setAttrib........ i 149
Rf_setVarot 152
Rf_shallow_duplicate.......................... 155
Rf_str2type.........l 154
RE_topenv ..ottt 154
Rf_translateChar 168

API index

Rf_translateCharUTF8...............ccvvvenn.. 168
Rf_type2char.......... 154
Rf_type2str.........l 154
Rf_type2str_nowarn.................. ... 154
Rf_unprotect........... ... i 144
Rf_unprotect_ptr 145
Rf _warning 173
Rf _warningcall................ ..., 173
Rf_warningcall_immediate..................... 173
Rf_xlengthl 73
Rf_xlengthgets.............. ...t 146
RiCOnV ... i 190
Riconv_closSecoiiiiiii i 190
Riconv_open............ il 190
Rmath.h. 181
rmultinomvuiit i e 182
Rprintf 176
rsort_with_index 188
Rtanpi..... ... 184
Rvprintf.......l 176
S

S AllOC . i 172
S realloC . it e 172
SAIMIIL . ottt et e e e 187
SET_COMPLEX _ELT.0ttt 168
SET_INTEGER_ELT...... ..ottt 168
SET_LOGICAL _ELT. ...ttt 168
SET_RAW_ELT ... i 168
SET_REAL _ELTottt 168
SET_STRING_ELT......ciiitiiiiii i 151
SET _TAG. . e e 160
SET_VECTOR_ELTttt 168
SETCADARot e e 158
SETCADDDR . ..ottt it et e e e 158
SETCADDR. . ..ottt e e e 158
SETCADR . . .ottt e e 158

SETCAR . .o 158

224
SETCDR . ..ottt e 158
SHALLOW_DUPLICATE_ATTRIB..................... 155
Sign ... 185
signrank_free.............o ool 182
sinpi 184
STRING_ELT . ..ottt e e e ee e 151
STRING_PTR_RO. ..ot 168
T
TAG .« ot 158
tanpi . . 184
tetragammacoiunnnniiiiiiiiii 183
TLIGamMMA. . . 183
TRUE . oot 186
TYPEOF . .o e e 158
unif_rand 174
UNPROTECT . .ottt e e e et i 144
UNPROTECT_PTR . ..ottt it 145
A%
VECTOR_ELTot i e 168
VECTOR_PTR_RO.ot 168
VIAXZeL . ..o 172
VIAXSET . ottt ettt 172
VIMMAN . Lot e 186
wilcox_free 182
X
XLENGTH . ..ot e e 73

225

Fortran API index

Entry points listed in this index are intended to be used from Fortran code in distributed packages
and ideally will only be changed after deprecation.

Ablepr .. ovi 176 QSOTEB .ottt et 189

dbleprl.ot 176 QSOTtd ... 189

I

Intpr ... 176 R

Intprl....oooii 176 TChRUST . oottt et 192
Tealpr ... 176

L realprl.. 176
Texit ... 174

Experimental API index

226

Entry points and variables listed in this index and in header files listed here are part of an
experimental API, such as R_ext/Altrep.h. These are subject to change, so package authors
wishing to use these should be prepared to adapt.

A

ALTREP e 170
ALTREP _CLASS e i 170
C

COMPLEX_GET_REGIONcoiiiiiinininnnnn. 170
COMPLEX_OR_NULL. ...ttt it it 170
D

DATAPTR_OR_NULL. ...ttt 170
I

INTEGER_GET_REGIONo, 170
INTEGER_IS_SORTEDcciiiiiiiinnnnn.. 170
INTEGER_NO_NA et 170
INTEGER_OR_NULL....... ..ot 170
IS_LONG_VEC ittt et eeeen s 153
IS _SCALAR ..ot e 153
L

LOGICAL_GET_REGIONt 170
LOGICAL _NO_NA o e 170
LOGICAL_OR_NULL.ot 170
R

R_ActiveBindingFunction 154
R_altrep_datal...............cooiiiiiiiiii., 170
R_altrep_data2..........ccouiuiiiiiniinneennnnnn 170
R_BindingIsActiveoiiinnan. 154
R_BindingIsLocked 154
R_check_class_etC.......coviiiiiininenennnnn.. 150
R_chk_calloC......oiiiiiiii i 173
R_chk_freecoiiiiiiiiiineiiiiieennnn. 173
R_chk_realloC......ccouiiiiiiii i, 173
R_compute_identical, 154
R_do_MAKE_CLASS.t 150
R_do_new_object.......... i 150
R_do_Slot .ot 150
R_do_slot_assigncovviiiiiinnnnnnnn. 150
R_EnvironmentIsLocked..................covun.. 154
R_existsVarInFrame..................ccviuin.n. 154
R_ext/Altrep.h........oooiiiiiiiiii... 170, 172
R_ext/GraphicsDevice.h........................ 196
R_ext/GraphicsEngine.h........................ 196
R_ext/QuartzDevice.h...............cvviinn.. 196
R_FindNamespace...........c.cuvuiiiniuunnnnnnnnn 154
R_forceAndCall............c.ooiiiiniinnnnennnn.. 154

R_getClassDef..............ot 150

R_GetXllImage..................ciiiiiii... 196
R_has_slot ..ot 150
R_InitFileInPStream...............couvenen.n.. 193
R_InitFileOutPStream.......................... 193
R_InitInPStream.............c.uiiririninennnnn.. 193
R_InitOutPStreamcciiiuiininrnn.. 193
R_IsNamespaceEnvc.oviiiiiiinnnnnnnnn 154
R_IsPackageEnv............cooiiiiiiiiiininninn. 154
R_LockBinding................... ...l 154
R_LockEnvironmentouuuinininennn.. 154
R_1lsInternal3............cciiiiiniininannanann. 154
R_MakeActiveBinding...................... 154
R_NamespaceEnvSpeccovvuuiuieennnnn. 154
R_PackageEnvNameovveiinnnnnen... 154
R_removeVarFromFrame.......................... 154
R_Serialize........ ..ot 193
R_set_altrep_datal............................ 170
R_set_altrep_data2......................... ... 170
R_unLockBinding................. 154
R_Unserialize............c.uuiriniiiiinnnnnnann 193
RAW_GET_REGION...... ..ottt 170
RAW_OR_NULL .. .ot 170
REAL_GET_REGION......... ..ot 170
REAL_IS_SORTED...... ..ottt 170
REAL _NO_NA .. et 170
REAL_OR_NULLotitti et i ie e ieenn 170
Rf_allocS40bject ..., 150
Rf_any_duplicated.......................... ... 154
Rf_any_duplicated3....................... 154
RE_asS . . e 150
Rf_charIsASCII.ot 169
Rf _charIsLatinl............ .. iiiiiinon... 169
Rf_charIsUTF8.........co i, 169
Rf_copylListMatrix..............coooiiiiinn... 154
Rf_duplicated.............oooiiiiiiiiiinnn... 154
Rf_isBlankStringccoviiiiinnnnnnnn. 153
Rf_isUnsorted...........coiiriiiiiiiinnnnnnnnn. 154
Rf_isVectorizableo on... 154
Rf_listAppend.................................. 154
Rf_match...........iiii i 154
Rf_ nlevelscouiiiininiiiiiiiii i 154
Rf_PairToVectorList...............oouinin.... 154
Rf _pmatch i 154
Rf _psmatch....... i il 154
Rf_StringBlank.............coiiiiiiiiininnnn.. 153
Rf_StringFalse............cooiiiiiiii.. 153
Rf_StringTrue..............t 153
Rf_VectorToPairList............ccovininon.n.. 154
S

STRING_IS_SORTEDcvtitiiiiiiiinineenann 170
STRING_NO_NA e e e 170

Embedding API index

227

Functions, variables, and header files to support creating alternate front ends and other forms of

embedding R.

addInputHandler..............cooviiiiiinnnnnnnnn 209
CleanEd........ oo i 208
fpu_setup ... 208
getInputHandler............ ..o, 209
R_addhisStory.....coviuiiiiiiiiiiiiiieannn 207
RBUSY ... 206
R_ChooseFile. ...t 207
R_CleanTempDir............ciiiiiiiiiiiiiin.. 208
RCleanUp ...t 208
R_ClearerrConsolecoviiiininenennnnn.. 206
R_DefParamsovviiiii et 212
R_DefParamsExXcvviniiiniineiineanennn, 212
R_dot_Lastooiiiii e 208
R_EditFileo, 207
R_EditFiles ...t 207
R_ext/RStartup.h...............l 211
R_FlushConsole..........ouiiiiiininiinnnnnnn. 206

R_getEmbeddingDllInfo......................... 209

R_InputHandlers.............ccoiviiiiinnnnnnnn. 209
R_Interactive............coouuiriniiiinnnnnan. 204
R_loadhistory.................oooiiiiiiiiaL 207
R_PolledEvents..........ooiiiiinininiinnnnnnnn. 209
R_ProcessEvents.............coiiiiiiiinnnnun... 213
R_ReadConsole........cviiiiiiii i 206
R_ReplDLLdolot 204
R_ReplDLLinit..........coiiiiiiiiiiiiiin, 204
R_ResetConsole..........coiniiiiiinninannnnannn. 206
R_RunExitFinalizers..................c.coou.n.. 208
R_RunPendingFinalizers........................ 208
R_SaveGlobalEnv...............cviuiinennnnann... 208
R_savehistory.............ol 207
R_set_command_line_arguments................. 211
R_SetParamsc.vtirininiiinnn, 212
R_setStartTime....... ..ot 211
R_ShowFiles ...ttt 207
R_TempDir ... 204
R_wait_usecCooiiiniiiiiiiiinn, 209
R_WriteConsole....... ...t 206
R_WriteConsoleExiiiniiiiinnnn.. 206
Rembedded.h 204
removeInputHandler............................ 209
Rf_endEmbeddedR.................. ..., 204
Rf_initEmbeddedR 204
Rf_KillAllDevicescoviiiiiininnnnnnn.. 208
Rinterface.h........ 204
run_Rmainloop........couuiiiiiiiiiiii i 204
S

setup_Rmainloop.............o il 211

Concept index

dnstall_extras file.... i 47
.Rbuildignore file............. ..., 43
Rinstignore file il 16

A

Allocating Storagec..oovviiiiiviinienon.. 146
Attributes.o 148

B

Bessel functions............ oo 183
Beta function oo 183
Building binary packages 44
Building source packages 43

C

C stack checkingt 192
C++ code, interfacing........... 138
Calling C from Fortran and vice versa........... 177
Checking packages.covviiiiieeniineann. 40
CITATION file . ..o 17, 80
ClaSSES .+ ettt et 150
Cleanup code.coouiiiiiiiiiiiiii .. 190
cleanup file........ ... i 3
Condition handling..............., 190
conditionalso 96
configure file. i 3
Copying objectst 154
CRAN L 3
Creating packages ..., 2
Creating shared objects 137
Cross-references in documentation 93
cumulative hazard.............. oo 181

D

Debugging ... 119
DESCRIPTION file ..o 4
Details of R types ..., 147
Distribution functions from C 181
Documentation, writing 83
Dynamic loading oL 128
dynamic Pagesuiiiii e 97

E

Editing Rd files ool 100
enCOding . ..o oo 99
Error handling oL 190
Error signaling from C 173
Error signaling from Fortran..................... 174
Evaluating R expressions from C................ 158

external pointer............ ... 166

228

F

Figures in documentation......................... 95
finalizer........ ..o 166
Finding variables............ oL 152

G

Gamma function ..., 183
Garbage collection.............. L. 144
Generic functions............. i 201

H

handling character data 151
Handling listso i 150
Handling R objects in C......................... 143

I

IEEE special values......................... 158, 175
INDEX file. ..ot 13
Indices....... oo i 96
Inspecting R objects when debugging............ 121
integration............. ... oo 187
Interfaces to compiled code 126, 155
Interfacing C++ code ..., 138
Interrupts.o 192

L

LICENCE file............. 9
LICENSE file. ... 9
Lists and tables in documentation 93

M

Marking text in documentation................... 91
Mathematics in documentation 94
Memory allocation from C.................... ... 172
MemOTy USE. .ottt 103
Method functionso 201
Missing values.............. L 158, 175

N

TNAINESPACES .+« v vt ettt tie et 49
NEWS.Rdfile.......ooooiiii 17
Numerical analysis subroutines from C........... 181
Numerical derivatives................. ... 161

(@)

OpenMPo 28, 193
Operating system access............oevevvunne... 126
optimization 186

Concept index

P

Package builder 43
Package structure........ oot 3
Package subdirectories.............. oL 13
Packages 2
Parsing R code from C........... 164
Platform-specific documentation.................. 96
Polygamma functions............................ 183
Printing from C....... 176
Printing from Fortran 176
Processing Rd format............................. 99
Profiling.........c.oooii i 101, 103, 104

R

Random numbersin C...................... 174, 181
Random numbers in Fortran..................... 177
Registering native routines 129

S

S4 objects. 150
Serialization............... 192
Setting variables oL 152
Sort functions from C........................... 188
SWeAVEt 45

229
T
tarballs....... ... 43
Tidying Rcode........ oo il 101
U
user-defined macros............................... 98
A\Y
Version information from C...................... 193
vignettes......... oo i 45
Visibility . ..o 194
weak reference i 167
Working with closures........... 151

Z

Zero-finding 160

	Acknowledgements
	1 Creating R packages
	Package structure
	The DESCRIPTION file
	Licensing
	Package Dependencies
	Suggested packages

	The INDEX file
	Package subdirectories
	Data in packages
	Non-R scripts in packages
	Specifying URLs

	Configure and cleanup
	Using Makevars
	OpenMP support
	Using pthreads
	Compiling in sub-directories

	Configure example
	Using modern Fortran code
	Using C++ code
	C standards
	Using cmake

	Checking and building packages
	Checking packages
	Building package tarballs
	Building binary packages

	Writing package vignettes
	Encodings and vignettes
	Non-Sweave vignettes

	Package namespaces
	Specifying imports and exports
	Registering S3 methods
	Load hooks
	useDynLib
	An example
	Namespaces with S4 classes and methods

	Writing portable packages
	PDF size
	Check timing
	Encoding issues
	Portable C and C++ code
	Common symbols
	C++17 issues
	C23 changes

	Portable Fortran code
	Binary distribution

	Diagnostic messages
	Internationalization
	C-level messages
	R messages
	Preparing translations

	CITATION files
	Package types
	Frontend

	Services

	2 Writing R documentation files
	Rd format
	Documenting functions
	Documenting data sets
	Documenting S4 classes and methods
	Documenting packages

	Sectioning
	Marking text
	Lists and tables
	Cross-references
	Mathematics
	Figures
	Insertions
	Indices
	Platform-specific documentation
	Conditional text
	Dynamic pages
	User-defined macros
	Encoding
	Processing documentation files
	Editing Rd files

	3 Tidying and profiling R code
	Tidying R code
	Profiling R code for speed
	Profiling R code for memory use
	Memory statistics from Rprof
	Tracking memory allocations
	Tracing copies of an object

	Profiling compiled code
	Profiling on Linux
	perf
	oprofile and operf
	sprof

	Profiling on macOS
	Profiling on Windows

	4 Debugging
	Browsing
	Debugging R code
	Checking memory access
	Using gctorture
	Using Valgrind
	Using the Address Sanitizer
	Using the Leak Sanitizer

	Using the Undefined Behaviour Sanitizer
	Other analyses with `clang'
	Other analyses with `gcc'
	Using `Dr. Memory'
	Fortran array bounds checking

	Debugging compiled code
	Finding entry points in dynamically loaded code
	Inspecting R objects when debugging
	Debugging on macOS

	Using Link-time Optimization

	5 System and foreign language interfaces
	Operating system access
	Interface functions .C and .Fortran
	dyn.load and dyn.unload
	Registering native routines
	Speed considerations
	Example: converting a package to use registration
	Linking to native routines in other packages

	Creating shared objects
	Interfacing C++ code
	External C++ code

	Fortran I/O
	Linking to other packages
	Unix-alikes
	Windows

	Handling R objects in C
	Handling the effects of garbage collection
	Allocating storage
	Details of R types
	Attributes
	Classes
	S4 objects
	Handling lists
	Handling character data
	Working with closures
	Finding and setting variables
	Some convenience functions
	Semi-internal convenience functions

	Named objects and copying

	Interface functions .Call and .External
	Calling .Call
	Calling .External
	Missing and special values

	Evaluating R expressions from C
	Zero-finding
	Calculating numerical derivatives

	Parsing R code from C
	Accessing source references

	External pointers and weak references
	An example

	Vector accessor functions
	Character encoding issues
	Writing compact-representation-friendly code

	6 The R API: entry points for C code
	Memory allocation
	Transient storage allocation
	User-controlled memory

	Error signaling
	Error signaling from Fortran

	Random number generation
	Random-number generation from Fortran

	Missing and IEEE special values
	Printing
	Printing from Fortran

	Calling C from Fortran and vice versa
	Fortran character strings
	Fortran LOGICAL
	Passing functions

	Numerical analysis subroutines
	Distribution functions
	Mathematical functions
	Numerical Utilities
	Mathematical constants

	Optimization
	Integration
	Utility functions
	Re-encoding
	Condition handling and cleanup code
	Allowing interrupts
	C stack checking
	Custom serialization input and output
	Platform and version information
	Inlining C functions
	Controlling visibility
	Using these functions in your own C code
	Organization of header files
	Moving into C API compliance
	Some API replacements for non-API entry points
	Creating environments
	Creating call expressions
	Creating closures
	Querying CHARSXP encoding
	Working with attributes
	Working variable bindings
	Some backports

	7 Generic functions and methods
	Adding new generics

	8 Linking GUIs and other front-ends to R
	Embedding R under Unix-alikes
	Compiling against the R library
	Setting R callbacks
	Registering symbols
	Meshing event loops
	Threading issues

	Embedding R under Windows
	Using (D)COM
	Calling R.dll directly
	Finding R_HOME

	Function and variable index
	API index
	Fortran API index
	Experimental API index
	Embedding API index
	Concept index

