

Developing a Data Processing Pipeline for Extending a Comprehensive Tandem Mass Spectral Library

Xiaoyu Yang, Pedatsur Neta,

Yuxue Liang, Connie A. Remoroza, Yamil Simón-Manso, Kelly H. Telu, Yuri Mirokhin, Dmitrii Tchekhovskoi, Alexey Mayorov, Tytus D. Mak, Lewis Geer, Stephen E. Stein

> NIST Mass Spectrometry Data Center Gaithersburg, MD

ASMS 2020 Reboot Informatics: Metabolomics

Tandem Mass Spectral Library

NS

- Mass spectral library searching is a fast and reliable technique to identify compounds from LC/MS/MS data.
- Building a comprehensive, high quality and reference tandem mass spectral library is essential for the accurate compound identification.
- More compounds, more compound types;
- Different energies, precursor ions;
- Various mass spectrometers with different ion sources.

Ifile Search View Icols Options Window Help	MS Soa	irch
🕲 🗫 🛱 🗐 Scan 4001 RT:9.244 Unite Pressure 💌 🛞 🐁 🖉		
S Name 1 L Scan:5334 RT:13.262 urine_1 2 L Scan:3849 RT:9.557 urine_n 3 L Scan:3789 RT:9.400 urine_n 4 L Scan:2303 RT:4.436 Precurs	56 2926 123 0538 Cor 80 120 160 200 240 10.1 (History) Scan-4801 RT: 9244 Urine PrecursorScan-4799? nl . **** Preferred team Second. For Earls Second. Second. ****	rine PrecursorScan:4799? nk (; IV/A IU/E; 11 U/E; History) mment: Charge=1 Parent=287.1020 argest peaks;
×	100-	287.1021
1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	50 56 2926 84,0449 P-C9H803 123,0538 169,0594 50 50 P-C9H803 123,0528 100	3 194.9978 218.9984 242.0804 270.0756 0682 P-NH3 270.0756 287.1001
S Name #1 945 Phenylacetyl-L-glutamine #2 944 Phenylacetyl-L-glutamine	50 60 70 80 90 100 110 120 130 140 150 160 170 1 Scan:4801 RT:9.244 Urine PrecursorS Head to Tail MF=94 Offenere: / fead to Tail (Site by Sid), Stateactors /	80 190 200 210 220 230 240 250 260 270 280 290 30 5 RMF=958 ▼ Phenylacetyl-L-glutamine stytem #/
= 3 917 Phenylacetyl-L-glutamine = 4 905 Phenylacetyl-L-glutamine = 5 866 Phenylacetyl-L-glutamine = 6 854 Phenylacetyl-L-glutamine = 7 822 Phenylacetyl-L-glutamine = 8 582 Castion [M-H]=-s29.1=>: = 9 569 Drostanolone propionate [100- 50- C4H8N2NaO 0 NH2 C5HTION2NaO3 C5HTION2NaO3 C6HTION2NaO3 C5HTION2NaO3 C7HTION2NaO3 C5HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NaO3 C7HTION2NAO3 C7HTION3NAO3 C7	me, Phenylacetyl-Lglutamine maik: C13H108/Q4 / 264 Exact Mass: 264.11008 CAS#; 28047-15-6 /fiz: 1259106 [De; 207208 DB; init_msms_2017_v43_r er.DBs: None mment. NIST Mass Spectrometry Data Center es; Consensus spectrum; micromol/L in efacetonitrifeome acid (260500-1); ViaL]D=7151;
= 1 569 Drostanolone propionate [(1) (1)

Ι	J		К			
Metabolite	•	Formula	Ŧ	Prec.Type	•	
Diethyl succinate	C8H14O4		[M+H-C4H100]+			
LbetaHomoserine	C4H9NO3		[M+H-H2O]+			
7-Hydroxychromano	C9H8O3		[M+H]+			
3,4-Dihydroxy-L-phei	nyl	C9H11NO4		[M+H-NH3]+		
5-Aminolevulinic acid	ł	C5H9NO3		[M+H]+		
Bestatin		C16H24N2O4		[M+H-C8H15O4N]+		
Benzeneethanamine		C8H11N		[M+H]+		
(.+/)-SKF 81297	C16H16CINO2		[M+H-C8H7ClO2]+			
25-Hydroxycholesterol		C27H46O2		[M+H-H4O2]+		
25-Hydroxycholester	C27H46O2		[M+H-H4O2]+			

Procedure of Extending the NIST Tandem Mass Spectral Library

X. Yang, P. Neta, S. Stein. Extending A Tandem Mass Spectral Library to Include MS² Spectra of Fragment Ions Produced In-Source and MSⁿ Spectra. *J. Am. Soc. Mass Spectrom.* November 2017, 28: 2280–2287.

X. Yang, P. Neta, S. Stein. Quality Control for Building Libraries from Electrospray Ionization Tandem Mass Spectra. Anal. Chem., 2014, 86: 6393-6400.

New Compound Selection Process

Big Data Analysis

50,000 spectra per compound

for 30,000 compounds

1,500,000,000 spectra

Ion source: ESI, APCI

Instruments: HCD, IT, FT-IT; Q-TOF

Modes: Positive, Negative

Spectrum types: MS², MS³, MS⁴

Energies: 20 steps, 2%-320%

Precursors: [M+H]⁺, [M+2H]²⁺, [M-H]⁻, [M-2H]²⁻; [M+Na]⁺; Dimers, Trimers; Isotopic Precursors; MSⁿ

In-source Fragments: [M+H-neutral]⁺;[M-H-neutral]⁻

The Data Processing Pipeline

Product Ion Annotation for Glycans

NEW

Q-TOF Spectra with APCI for Extractable and Leachable Compounds

NEW

Using Pipeline for Quality Control of Spectra with Monoisotopic and Isotopic Precursors

🖺 NIST MS Search 2.3 - [Name sea	arch]							- 0 ×		
■ <u>F</u> ile <u>S</u> earch <u>V</u> iew <u>T</u> ools <u>O</u> ption	ons <u>W</u> indow <u>H</u> elp					-		- 8 >		
å 🖻 🛍 🎒 🎇 🎆 📲 🗔 m/z ←	?		ifferent ir	istrumen	ts, Precurs	<u>ors</u>				
VITAMINC	Clear a-z hr_msms_nist2020_v42	~								
Vitamin C [M+H]+ HCD	2% P=177 ^									
Vitamin C [M+H]+ HCD	2% P=1//	100-				C6H5O4=p-2F	120 141.01/9			
Vitamin C [M+H]+ HCD	10% P=1// 15% D-177			С5H3O2=p-CF	1604 95.0124					
Vitamin C [M+H]+ HCD	20% P=177				0	н І	Vitamin C			
Vitamin C [M+H]+ HCD	25% P=177									
Vitamin C [M+H]+ HCD	30% P=177					OH	[M+H] ⁺ HCD, NCE	:=20%		
Vitamin C [M+H]+ HCD	35% P=177					\sim				
Vitamin C [M+H]+ HCD	40% P=177	50-				1				
Vitamin C M+H+ HCD	40% P=177				HO \		p 177.	.0390		
Vitamin C [M+H]+ HCD	50% P=177				OH					
Vitamin C [M+H]+ HCD	60% P=177	-								
Vitamin C [M+H]+ HCD	75% P=177									
Vitamin C [M+H]+ HCD	90% P=177									
Vitamin C [M+H]+ IT-F1	Г 35% P=177	0	····•	· · · <mark>· · · Ⅰ</mark> · · · · · · · · ·	┍╀╴╷╶╷╶╷╶╷┥╷╿╷┥╴╴╷╶╷	┍╶┰╶┰╺ <mark>┦</mark> ┎╶┰╶┰╶┰╶┦	· · · · · · · · · · · · · · · · · · ·			
Vitamin C [M+H]+ QTO	F 8V P=177	50) 60 70	80 90	100 110 120) 130 140	0 150 160 170	180 190		
Vitamin C [M+H]+ QTO	F 10V P=177	MW: 176	CAS# 50-81-7 C6	H8O6 (hr msms	nist2020_v42) Vita	min C [M+H]+	HCD 20% 7 P=177			
Vitamin C [M+H]+ QTO	F 12V P=177	Name: \/itam	in C		,,					
Vitamin C [M+H]+ QTO	F 14V P=1//	Formula: Cel								
	F 20V P=1/7									
	F 22V F-177	Other DBs: N	lone	<u>743#.</u> 30-61-7 <u>1413 1#.</u> 1	1341392 <u>10#.</u> 320379 <u>00.</u> 1	II_III5III5_III5(2020_V	+2			
Vitamin C [M+H]+ OTO	F = 26V/P = 177	Compound I								
Vitamin C [M+H-2H2O]	HCD 2% P=141	Compound H	Hash:							
Vitamin C [M+H-2H2O]+ HCD 5% P=141 Comment: NIST Mass Spectrometry Data Center						псD, 11-г I, II, Q-10г				
Vitamin C [M+H-2H2O]+	HCD 5% P=141	Notes: Conse	ensus spectrum; Nreps=	27/27; Mz_diff=-1.7ppr	n; Vial ID=363; Metabolite	2 108 spect	tra. 13 MS ⁿ			
Vitamin C M+H-2H2O	HCD 15% P=141	(50/50/0.1)				0				
Vitamin C [M+H-2H2O]+	+ HCD 20% P=141	lon mode: P				8 precurs	or ions:			
Vitamin C [M+H-2H2O]+ HCD 25% P=141 Instrument: Thermo Finnigan Elite Orbitrap						$[N_{+}H]^{+}$ $[N_{+}H_{-}2H \cap]^{+}$ $[N_{+}H_{-}H \cap]^{+}$				
Vitamin C [M+H-2H2O]+ HCD 30% P=141 Instrument type: HCD										
Vitamin C [M+H-2H2O]+ HCD 30% P=141					[M-H] ⁻ , [2	.M-H] ⁻ , [M-H-C2H4O2] ⁻				
Vitamin C [M+H-2H2O]+	HCD 40% P=141	Collision ene	rgy: NCE=20% 7eV					¥		
Names Structures		Plot/Text Plot /								
Lib. Search	Other Search	Names	Compare	Librarian	MSMS					

* numbers are the number of compounds

NIST

NIST Tandem Mass Spectral Library 2020

Only in 2019: 7,841 new compounds, 256,532 new spectra

Library Application

 Metabolomics: human plasma human urine human milk
E. Coli CHO cell

- Proteomics
- Lipidomics
- Forensics
- Food
- Environmental studies

Identifying Human Metabolites by Searching the NIST Tandem MS Library

Applying Data Processing Pipeline in Building Glycan Library:

human bovine Asian buffalo

African lion

• Milk samples of human, bovine and other mammals

- UHPLC with HCD and IT-FT/ion trap with FTMS
- Identified glycans by searching the library with hybrid search
- Used the data processing pipeline to generate and annotate consensus spectra
- 2,605 positive and negative ion spectra of 219 oligosaccharides

CHEMDATA.NIST.GOV Mass Spectrometry Data Center

Free Download

- MS Interpreter 3.4
- NIST MS Search 2.4 (hybrid search included)
- NIST MS PepSearch (batch mode search of MS Search,

hybrid search included)

- NIST Peptide Tandem Mass Spectral Libraries
 - (> 4M spectra)

<u>Summary</u>

- We developed a data processing pipeline to optimize data analysis for extending the NIST Tandem Mass Spectral Library 2020 with 31K compounds and 1.3M spectra including 6K human metabolites, 8K plant metabolites, 2K drugs, 1K pesticides etc.
- This library was also extended with spectra of
 - ✤ High resolution MSⁿ
 - High resolution Q-TOF mass spectra with APCI for extractable and leachable compounds
 - High resolution HCD, ion trap spectra of glycolipids
- The data processing pipeline can be used for building-your-own libraries.

Acknowledgements

Pedatsur Neta Yuxue Liang Connie A. Remoroza Yamil Simón-Manso Kelly H. Telu

Yuri Mirokhin Dmitrii Tchekhovskoi Oleg Toropov Alexey Mayorov Tytus D. Mak Lewis Geer Sanford Markey William E. Wallace Stephen E. Stein

