

THE MASSKIT API

MassKit: A Flexible and High Performance API for Mass Spectrometry

Douglas J. Slotta, Lewis Y. Geer. Mass Spectrometry Data Center, National Institute of Standards and Technology, Gaithersburg, MD, USA

PubMed		US Patent Office		Wikipedia	
Articles	Compound	Patents	Compound	Pageviews	Compound
233,597	Ethanol	680,997	D-sorbose	204,012	Fentanyl
193,424	Cholesterol	638,068	Hexitol	179,887	3,4-Methylenedioxymethamphetamine
190,208	Water	592,031	Mannitol	179,499	Cocaine
178,975	Oxygen	525,252	Benzoic Acid	163,931	Methamphetamine
178,554	Mannose, D-	509,079	DL-Arginine	163,424	Tramadol
127,007	Epicholesterol	464,982	p-Toluenesulfonic acid	152,967	Gabapentin
116,448	Adenosine-5'-triphosphate	461,797	Mannose, D-	148,085	Lysergide
109,502	Tyrosine	426,432	Elaidic Acid	145,589	Water
107,112	Dopamine	418,795	Histidine	142,300	Alprazolam
103,262	Serotonin	414,130	DL-Histidine	135,789	Diazepam

Table 1: The top ten compounds from each resource, ranked by their number of entries.

In our paper, Alomics: Exploring More of the Proteome Using Mass Spectral Libraries Extended by Artificial Intelligence[†], we discuss using Machine Learning to predict peptide spectra. The test and training sets for the model developed in that paper were derived from NIST high-resolution mass spectral libraries, created using Orbitrap HCD spectra from human, mouse, and Chinese hamster ovary cells (cell lines CHO-K1, CHO-S, CHO-DG44). The libraries include several modifications: carbamidomethyl cysteine, methionine oxidation, glutamine to pyro-glutamic acid, glutamic acid to pyro-glutamic acid, Nterminal acetylation, N-terminal pyro-carbamidomethyl cysteine, serine/threonine/tyrosine phosphorylation, and TMT6plex.

A script was used to generate a set of tryptic peptides with permutations of possible PTMs. These peptides were fed into the Alomics model to generate a spectral library. The library contains 17,113,904 spectra, stored in 6 parquet files totalling 67GB of storage. The 8,819 spectra with known peptides from the original CHO test set were searched against this predicted set.

⁺ <u>https://doi.org/10.1021/acs.jproteome.2c00807</u>

CASE STUDY: EXPERIMENTS IN NOTORIETY

We started an experiment to determine if a compound's notoriety could be useful when discriminating between closely scored matches. Data linking compounds to articles in PubMed, patents recorded at the US Patent Office, and Wikipedia entries were gathered from PubChem. For the Wikipedia entries we used the Wikimedia REST API to gather the average monthly

> In the combined NIST EI and Tandem libraries there are approximately 390K unique InChI keys, and 162,113 of them are linked to at least one of the three resources by PubChem. The Venn diagram shows the magnitude of the overlaps between the sets of compounds linked to each resource.

Table 1 shows the top ten compounds for each resource, as ranked by their respective counts. Obviously they do not entirely agree as to the order since they serve different audiences. The next step will be to determine which, if any, of these lists should be used, and how to integrate the results into spectral libraries.