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In contrast to the rule-based traditional models, deep learning (DL) techniques, a

subset of machine learning that uses artificial neural networks to mimic the learning

process of the human brain, have emerged as a more advanced solution for spectral

prediction. The recent advancements in this field have been fueled by modern shotgun

proteomics generating large volumes of high-throughput peptide tandem mass

spectrometry data, which provide ample data for training DL models. However, current

DL approaches have largely excluded a substantial fraction of higher energy-induced

collisional dissociation (HCD) fragment ions beyond the typical sequence b and y ion

series, mainly due to the challenges of understanding and annotating complex

fragment ion types under collision-induced dissociation. This study aims to enhance

peptide identification by predicting a broader range of HCD fragment ion types,

ultimately providing a more accurate and in-depth interpretation of peptide spectra.

2. Implementation of a deep learning attention model architecture. We present an

attention-based deep neural network designed to predict the intensities of a wide range

of fragment ion series generated under higher energy collision-induced dissociation

(HCD) conditions, intended for peptide and protein identification in shotgun proteomics

experiments.

Figure 2. The six-step workflow involves (1) data preprocessing, (2) splitting all data into training,

validation, and testing datasets, (3) creating a fragmentation dictionary, (4) transforming data into

streamlined peak lists, (5) building and training the model, and (6) predicting MS/MS spectra on the

evaluation data (validation/test/external sets).

3.2. Prediction of complex HCD fragment ion types. Predictions based on the

validation/test sets demonstrated that our model is able to predict various fragment ion

types such as (1) sequence a/b/y ions, (2) neutral losses, (3) internal fragments, (4)

immonium ions and side chain fragments, and (5) precursor and related ions. The

contribution of each of these ion types to the overall intensity coverage is illustrated in

Fig. 3 and an example of predicted spectrum is displayed in Fig. 4.

In this work, we developed an advanced deep neural network system, that excels in

predicting a wide array of complex HCD MS/MS fragment ion types. Our model

system was demonstrated to accurately predict all known fragment ion types,

including sequence a/b/y ions, neutral losses, internal fragments, immonium ions,

amino acid side chain fragments, and precursor ions. This approach ultimately

broadens the applicability of current predictive models to a wide array of different

peptides and modified peptides involved in complex proteomics studies.

Conclusion

Figure 3. Predicted intensity coverage of the six major ion types in HCD spectra in the validation

set of 12076 spectra. Note that the remaining 24.5% intensity in the figure is that from

unknown abundance contribution, collectively constituting potentially unannotated,

contaminant, and noise peaks. A. Relative percentage of Ion Abundance, and B. Relative

percentage of ion counts.

We generated a high-quality DL dataset collected from the NIST reference peptide

spectral libraries1, consisting of approximately 1.8 million unique tandem mass spectra

from around 800,000 protonated peptides. The spectral data are preprocessed and

tailored for DL model development, in which each raw mass spectrum was filtered,

and collision energy recalibrated. By automatically analyzing all annotated fragment

ions in these libraries, we constructed a comprehensive HCD fragmentation dictionary,

encompassing 7,919 isotope peaks originating from 3,143 distinct sequence ions,

neutral losses, internal, immonium, and amino acid fragment ions. We implemented

an attention-based deep neural network. The architecture of our model starts with an

input tensor that embeds peptide sequence, modification, charge, and collision energy

and ends with a one-dimensional output vector of prediction intensities for the 7,919

isotope peaks in our dictionary.
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Figure 4. Head-to-tail plot showing a predicted peptide HCD spectrum (bottom, blue) of a doubly

charged ACNCNPMGSEPVGCR with three Carbamidomethyl cysteine sites and oxidized

methionine at 51.6eV/NCE30, and the matching experimental spectrum (top, red).
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Results

1. Data Strategy. NIST peptide libraries are comprehensive, curated mass spectral

reference collections from various organisms and proteins useful for the rapid

matching and identification of acquired MS/MS spectra. Can we directly combine all

these different mass spectral libraries for model training?

Table 1. NIST peptide libraries of 5 million unique HCD tandem mass spectra

NIST Peptide 

Spectral libraries

Experiment Type Library Name Spectrum Collision Energy Spectra Peptide Year Built

label free Human Proteome Consensus Mixed NCE and eV 911,783 605,677 2020

label free Human Proteome Selected NCE and eV 911,783 605,677 before 2020

label free
Human Proteome 

(Synthetic)
Selected NCE 696,692 188,805 2017

label free Human (Phospho) Selected NCE and eV 66,922 27,400 2019

label free Human (Skin and Hair) Consensus NCE and eV 27,971 20,131 2021

label free Mouse CPTAC Tumor Selected NCE 17,851 10,026 2014

label free Chinese Hamster Ovary Selected NCE and eV 158,026 74,509 2018

iTRAQ-4  Human CPTAC Tumor Selected NCE 1,201,632 390,009 2014

iTRAQ-4  Human CPTAC Phospho Selected NCE 223,340 67,533 2014

TMT-10  Human CPTAC Tumor Selected NCE 597,548 386,224 2019

iTRAQ-4  Mouse CPTAC Tumor Selected NCE 91,068 42,095 2014

iTRAQ-4  Mouse CPTAC (Phospho) Selected NCE 15,746 7,026 2014

Figure 1. Data preprocessing strategies are used for

improving the spectral data's relevancy and

consistency, resulting in a unified dataset suitable for

training, validation, and testing in deep learning.
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Training/Validation/Tesdting Datasets:

four “selected”-type, high-quality label-

free HCD spectral libraries consisting of 

~1.8 million tandem mass spectra of ~ 

800,000 peptides

Library’s applicability

Library’s data quality

Ion types Counts

a-ions 226

b-ions 2026

y-ions 3643

parent ions 131

internal ions 1836

immonium/others 57

Note: Including neutral loss and

isotopic peaks.

A total of 3,143 unique 

HCD fragment ions from 

7,919 isotope peaks 

3.1. Prediction of tandem mass spectra of unmodified and covalently modified

peptides. We provide the CSS scores for the five major peptide classes produced by

trypsin digestion. In general, modified peptides add more complexity to the structure and

fragmentation than unmodified peptides. Overall, all score differences between Class 1

and the others are within 0.04 for the training and test data, showing that the model can

handle a wide variety of different peptides. (Table 2).

Class Description TestCommon TestUniq

1 Tryptic_unmodified 0.964 0.947

2 Tryptic_modified 0.942 0.933

3 Miscleaved_unmodified 0.936 0.919

4 Miscleaved_modified 0.924 0.905

5 semitryptic 0.925 0.918

Table 2. The median CSS was

calculated for each peptide class in

TestCommon (most similar to the

training data) and TestUniq (dissimilar

to the training data).
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4. Benchmarking proteome-scale in-silico spectral libraries on a HeLa dataset.

We tested our predicted libraries on reanalyzing a human HeLa dataset (PXD022287).

We compared the results of our in-silico library for peptide identification to other

popular data analysis software tools, such as MS-GF+ (i.e., sequence search) and the

MS PepSearch/NIST Human Library (i.e., spectral search).

304684191 3277 483 84232904

MS-GF+ In Silico NIST Human In Silico

Library Library Library

Figure 5 shows that our in-silico

libraries exhibit excellent

performance on this dataset,

yielding 30,468 (87.9 %) and

32,904 (98.6 %) overlapping

identifications with MS-GF+ and

the NIST libraries, respectively.

Note: A total of > 5 million HCD spectra are included in these libraries with each spectrum uniquely

defined by sequence, modification, charge, and collision energy. Libraries vary in how they are

constructed, and the underlying data used; some with chemical labeling, others rely on label-free

spectra, and they can be created using consensus or selected methods.
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