

Optimization of Sample Preparation Methods for Building Human Glycopeptide Libraries

Yi Liu, Meghan C. Burke, Zachary C. Goecker, Sergey L. Sheetlin, Guanghui Wang, Yuri A. Mirokhin, Zheng Zhang, Yuxue Liang, Xiaoyu Yang, Dmitrii V. Tchekhovskoi, Stephen E. Stein

Mass Spectrometry Data Center, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States

INTRODUCTION

Since glycoproteins are ubiquitous in human biology and the specific glycans attached to each glycosylated site depend on cellular kinetics, not genomics, determination of these glycan structures requires special methods. In this report we described work being done at NIST to determine individual N-linked glycans and record their spectra and abundance distributions at each site for over 30 native and/or recombinant human glycoproteins. Experiments were designed to optimize glycoprotein sample processing to achieve reliable and reproducible results. By applying NIST developed validation methods to tentative identifications made by MSFragger, we derived a comprehensive library of proteolytic glycopeptide data for commonly observed plasma and related glycoproteins.

RESULTS

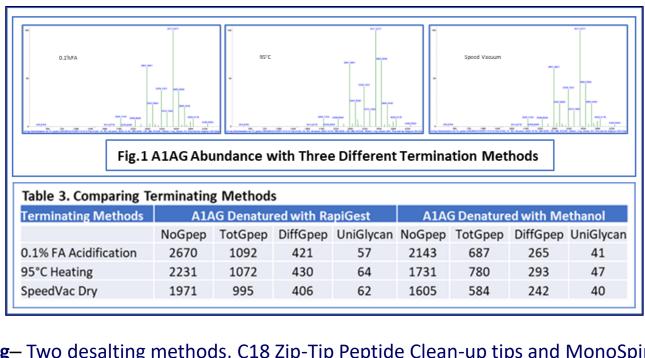

1. Digestion buffer— Two buffer systems were evaluated: 50mM Tris-HCI, pH8.5 and 50mM Ammonia Bicarbonate (ABC), pH 8.5. ABC was found to be optimal for most of protease digestions based on its greatly improved pH stabilization. However, Tri-HCL is ideal for certain proteases, such as Subtilisin (Table 1).

Table 1. Thyroglobulin Digested in Different Buffers									
Protease(s)	Ammonia Bicarbonate (ABC)				Tris-HCI				
	NoGpep	TotGpep	DiffGpep	UniGlycan	NoGpep	TotGpep	DiffGpep	UniGlycan	
AlphaLytic	5265	500	249	29	2565	84	59	12	
Chymotrypsin	6573	684	316	43	2631	140	83	16	
Glu-C	5157	306	167	40	3050	161	107	29	
Trypsin	6415	782	335	60	2870	150	84	22	
Subtilinsin	14223	1224	372	37	12933	1398	410	34	
Subtilinsin/Trypsin	9430	1028	283	38	10327	1866	433	45	

2. Denaturants – Eight denaturant conditions were examined (Table 2a). Among of them, an acid labile surfactant (ASF), SDS and Urea were further evaluated for several other glycoproteins based on their denaturing efficiency. ASF was generally the most effective and easy-to-use, so used for glycoproteins (Table 2b). As to those without disulfide bonds, glycoproteins such as Alpha-1-Antitrypsin, we tested without denaturants and heat alone methods. These were found less effective than digestions with chemical denaturants (Table 2c).

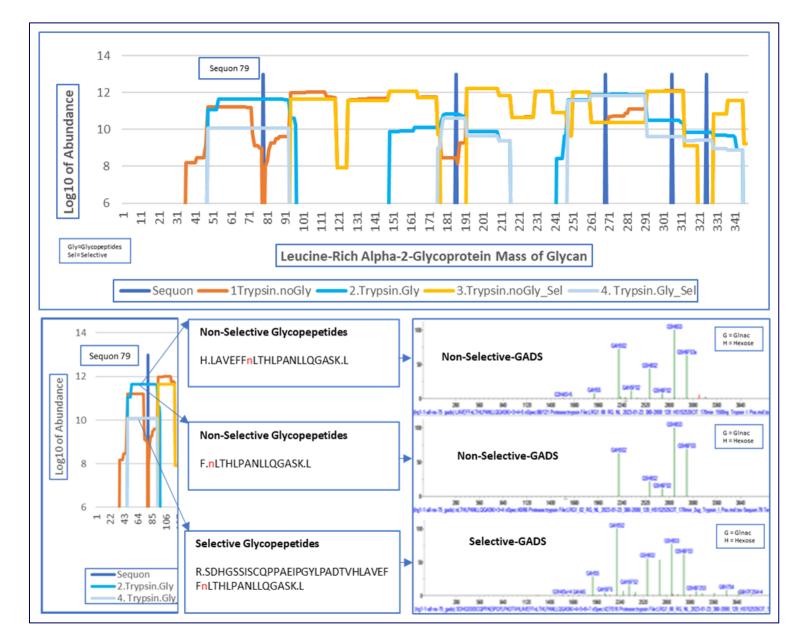
	Denaturants		Те	mp/Time	NoGpep	TotGpep	DiffGpep	UniGlyca	in
	80% ACN		25	°C/60mins	6412	106	51	27	
	6M Guanidine 20% Methanol		40	°C/60mins	8923	175	69	15	
			25	°C/60mins	7014	108	53	21	
	0.1% RapiGest 0.4% Sodium Dodecyl Sulfate			°C/30mins	12068	552	130	24	
				°C/10mins	11989	570	164	23	
	50% Trifluoroethanol		25	°C/60mins	5762	111	54	23	
	8M Urea			°C/60mins	14609	14609 684		24	
	No Denaturan	t	95	°C/10mins	5161	123	47	17	
		Denatur 0.1% A	ants No SF 98	Gpep Tot 363 4	111	ffGpep Un 96	iGlycan 15		
Table 2	2c. Comparing	Denatur 0.1% A 0.4% S 8M Ur	ants NoC SF 98 DS 73 ea 74	Spep Tot 363 4 353 2 184 2	Gpep Dif 111 299 239	ffGpep Un 96 72 57	iiGlycan 15 14 15		
Table 2	2c. Comparing se(s)	Denatur 0.1% A 0.4% S 8M Ur	ants Noo SF 98 DS 73 ea 74 hout Dena	Spep Tot 363 4 353 2 184 2	Gpep Dif 111 299 239	ffGpep Un 96 72 57	iiGlycan 15 14 15 in	naturant	
		Denatur 0.1% A 0.4% S 8M Ur	ants NoC SF 98 DS 73 ea 74 hout Den Der	Eppen Tot 363 4 353 2 184 2 aturants for naturant	Gpep Dif 111 299 239	ffGpep Un 96 72 57 -Antitryps	iiGlycan 15 14 15 in	naturant DiffGpep	UniGlyca
	se(s)	Denatur 0.1% A 0.4% S 8M Ur with/wit	ants NoC SF 98 DS 73 ea 74 hout Den Der	Eppen Tot 363 4 353 2 184 2 aturants for naturant	Gpep Dif 111 299 239 or Alpha-1	ffGpep Un 96 72 57 -Antitryps	iiGlycan 15 14 15 in No-Der		UniGlyca 18
Proteas	se(s) /Lys-C	Denatur 0.1% A 0.4% SI 8M Ur with/wit	ants Noo SF 98 DS 73 ea 74 hout Dena Der TotGpep	Epep Tot 363 4 353 2 184 2 aturants for naturant DiffGpep	Gpep Dif 111 299 239 Dr Alpha-1 UniGlycan	ffGpep Un 96 72 57 74 74 74 74 74 74 74 74 74 74 74 74 74	iiGlycan 15 14 15 in No-Der TotGpep	DiffGpep	
Proteas Trypsin	se(s) /Lys-C 6lu-C	Denatur 0.1% A 0.4% SI 8M Ur with/wit NoGpep 15540	ants Noo SF 98 DS 73 ea 74 hout Den Der TotGpep 1104	Spep Tot 363 4 353 2 184 2 aturants for aturant DiffGpep 225	Gpep Dif 111 299 239 239 or Alpha-1 UniGlycan 44	ffGpep Un 96 2 72 5 57 2 -Antitryps NoGpep 12582	iiGlycan 15 14 15 in No-Der TotGpep 588	DiffGpep 175	18

3. Termination— Three protease termination methods were evaluated: 1) 0.1% Formic Acid: Acidic protease reaction buffer till final concentration of 0.1% FA to inhibit the protease activity; 2) 95°C heat: Inactive protease with high temperature; and 3) Speed Vacuum drying: High temperature inactivation, specially used for sequential digestion with different buffer. Relative abundances of site specific glycans were not affected by the methods (Fig 1), but 0.1% FA and 95°C heat inactivated proteases generated the larger glycopeptide abundances as showed in Table 3.

4. Desalting – Two desalting methods, C18 Zip-Tip Peptide Clean-up tips and MonoSpin SPE centrifugal spin columns, were applied for the purpose of proteolytic peptides clean-up. MonoSpin SPE centrifugal spin columns (MS) with the low-pressure, high-flow, and low-liquidretention properties, as well using stepped elution buffers, yielded the largest number of identifications (Table 4a).

During desalting with MonoSpin columns, a washing solution was used for removing salts. Two solutions were compared. One is vendor recommended LC-H2O, and another is 0.1%FA solution. Our results found 0.1%FA clearly optimal (Table 4b).

> Table 4b. rotease Lys-C/Arg-C Trypsin


MATERIALS AND METHODS

More than thirty native and/or recombinant human plasma glycoproteins, such as Alpha-1-Glycoprotein (A1AG), Apolipoprotein-B100 (APOB), Alpha-1-Antitrypsin (A1AT) and other selected human glycoproteins, such as Thyroglobulin (TG), Prostate-Specific-Antigen (PSA) and Erythropoietin (EPO), were processed for building human glycopeptide libraries. The workflow of sample processing, before and after digestion, typically entailed protein sample denaturation, reduction and alkylation, termination of proteolytic activity, peptide desalting and clean-up. These peptides were then analyzed by nanoflow liquid chromatography with tandem spectra acquired by DDA in a high resolution/high mass accuracy mass spectrometer. Library creation was done using a multistep NIST developed analysis platform, Pipeline GUI, leading to a GADS library, consisting of Glycopeptide Abundance Distribution Spectra (GADS) for each N-glycosylated site, along with individual MS/MS spectra.

Table 4a. Comparing Desalt Methods							
Methods	NoGpep	TotGpep	DiffGpep	UniGlycan			
MS-1 (100% ACN)	9750	313	107	30			
MS-2 (50%, 80%ACN/0.1%FA)	20994	532	167	33			
ZipTip-1 (3xZip-Tips)	16568	378	124	30			
ZipTip-2 (1xZip-Tip)	16580	369	120	30			

Table 4b. Comparing Desalt Washing Solutions									
Protease(s)	Washing Column with 0.1% Formid Acid				Washing Column with LC-H2O				
	NoGpep	TotGpep	DiffGpep	UniGlycan	NoGpep	TotGpep	DiffGpep	UniGlycan	
Lys-C/Arg-C	7868	1225	311	64	6065	883	207	56	
Trypsin	7630	1536	343	68	6652	873	200	54	
Trypsin/Lys-C	8747	1980	438	83	6308	1269	328	67	

5. Data analysis – Using the NIST developed Pipeline, surprisingly, we found the MSFragger nonspecific cleavage settings yielded the best results, regardless of the protease employed. For the tested proteases, such as Trypsin, Chymotrypsin, Lys-C, Glu-C, Asp-N, Arg-C, LysargiNase and Alpha Lytic, this method generated peptides from unexpected cleavage sites, generating additional highquality glyco- and non-glycopeptides. Fig 2. presents an example, Leucine-Rich Alpha-2-Glycoprotein Sequon 79, in which two of high-quality tryptic unexpected unique Glycopeptide Abundance Distribution Spectra (GADS) were detected with non-selective search while with selective, only one tryptic glycopeptide was found. This provides important confirmation of glycan distributions. We find that non-selective search is a very powerful calculation method capable of reliable extracting all usable information derivable from protein digestions.

CONCLUSION

In this report, more than thirty Human Glycoproteins were studied. The preparation methods of glycopeptide were optimized and evaluated using a NIST developed Pipeline software for building Glycopeptide Libraries.

Disclaimer: Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose

