Building the NIST Tandem Mass Spectral Library 2014

Xiaoyu (Sara) Yang Mass Spectrometry Data Center

Biomolecular Measurement Division Seminar September 9, 2014

Outline

- Methods of building the NIST tandem mass spectral library
- Quality Control
 - Peak annotation
 - Noise Removal
 - Chemical information consistency
- Major types of mass spectra
- Major types of compounds

Mass Spectral Library Searching

MS Search

NIST Tandem Mass Spectral Library

Rationale and Objectives:

- Chemical identification through *Electrospray ionization (ESI) tandem* mass spectrometry (MS/MS) is becoming a routine technique in metabolomics, proteomics and other fields.
- The identification can be aided by matching the acquired tandem mass spectra against reference library spectra.
- We are developing a <u>comprehensive</u> library of <u>high quality reference</u> ESI tandem mass spectra for the identification of compounds through the ion fragmentations.

Goals:

- Develop a tandem mass spectral library of all biologically relevant metabolite ions.
- Provide the library in a form that is easily searchable using software tools.

Steps of Building the NIST Tandem Mass Spectral Library

Authentic samples

metabolites, drugs, peptides

lipids, pesticides, surfactants, glycans, sugars

LC/MS/MS

Ion Trap (LTQ, IT/FTMS)

Collision Cell (HCD, QQQ, QTOF)

First clustering

Cluster MS² spectra using precursor m/z

count-based clustering algorithm

cluster spectra of the similar precursor m/z values

Second clustering

Create consensus spectra of MS², MS³ and MS⁴

adjusted dot product-based clustering algorithm

cluster spectra of the similar fragmentations

Chemical structure, formula, name, synonyms, and CAS are consistent

Precursor type identification

- precursor purity
- peak annotation
- mass accuracy
- noise removal

Manual inspection

Count-based Algorithm for Clustering Precursors

Steps:

- 1. Count the number of precursors (m/z count) within 0.1 m/z;
- 2. Sort the precursors by the m/z count in descending order;
- 3. Group similar precursors into the same cluster by using the precursor with the highest m/z count as the cluster center;
- 4. Repeat step 3 until all the precursors are clustered.

Clustering Algorithm for Generating Consensus Spectra

Steps: 1. Group similar spectra into the same cluster;

2. Generate one consensus spectrum from each cluster;

3. Pick the best consensus spectrum for the library.

Using Consensus Spectrum in the Library

- Eliminated low quality spectra by spectral clustering.
- Improved the spectrum quality by using the median of the m/z and intensity values.
- Realistically represented the characteristic fragmentations.

Same compound
Same precursor type
Same instrument
Same energy (cone, collision)
Same mode (+/-)
Same spectrum type (MS², MS³, MS⁴)

10-20 spectra / consensus spectrum 10-20 energy levels

What Precursor Types are in the NIST MSMS Library?

Compound Type	ESI Product	Ionic Species	
Neutral Molecule	Positive lons (129,662; 84%)	[M+H] ⁺ , [M+2H] ²⁺ , [2M+H] ⁺ , [M+H-H2O] ⁺ , [M+H-NH ₃] ⁺ , [M+H-OH] ⁺ , [M+H+H ₂ O] ⁺ , [M+NH ₄] ⁺ , [M+Na] ⁺ , [M-H+2Na] ⁺ , [M- 2H+3Na] ⁺ , [M+K] ⁺ , [M-H+2K] ⁺ , [M-2H+3K] ⁺ , [M+Li] ⁺ , [M-H+2Li] ⁺ , [M-2H+3Li] ⁺	
	Negative Ions (23,638; 15%)	[M-H] ⁻ , [M-2H] ²⁻ , [2M-H] ⁻ , [M-H-H ₂ O] ⁻ , [M-H- NH ₃] ⁻ , [M-H+H ₂ O] ⁻ , [M-H+NH ₃] ⁻	
Organic	Positive Ions (1,751; 1%)	[Cat] ⁺ , [Cat+H] ²⁺ , [Cat-H ₂ O] ⁺ , [Cat-NH ₃] ⁺ , [Cat+H ₂ O] ⁺	
Salt Cations	Negative Ions (40; <0.1%)	[Cat-2H] ⁻ , [Cat-2H-H ₂ O] ⁻ , [Cat-2H-NH ₃] ⁻ , [Cat-2H+H ₂ O] ⁻ , [Cat-2H+NH ₃] ⁻	

Multiple Precursor Ions for More Flexible Identification

inosine 5'-diphosphate acquired on Orbitrap HCD

What Precursor Types are in the NIST MSMS Library?

Structure dependent losses:

2H₂O, 3H₂O, NH₃+H₂O, H₂S, HCl, H₃PO₄, HCN, H₂, CO, CO₂, HCOOH, CH₄, CH₃, CH₃OH, CH₃SH, C₂H₅OH,

• • •

In Source Fragmentation Confirms Metabolite Identification

MSⁿ

Estra-1,3,5(10),7-tetraene-3,17β-diol [M+H]⁺

MSⁿ

Noise Removal

 Satellite peaks in Orbitrap HCD spectra: due to the Fourier transform ringing artifacts

Noise Removal

Noise Removal

3. Random noise peaks: in all mass spectra due to unstable instrument, impurity...

Noise Removal – an Example of Voting Algorithm

m/z	intensity	occurrence	m/z	intensity	occurrence
57.6951	3.10	2/12	91.0543	803.20	12/12
58.2664	2.30	2/12	91.1262	2.10	1/12
60.8356	2.10	1/12	91.6671	2.10	1/12
66.5419	2.00	1/12	91.9893	43.16	12/12
66.8604	2.00	1/12	95.6621	2.00	1/12
72.1006	2.10	1/12	100.4113	3.40	2/12
72.1606	3.10	2/12	102.0466	203.30	12/12
74.0151	298.60	12/12	105.0454	12.89	6/12
75.0229	355.04	12/12	105.4044	2.00	1/12
76.0307	77.12	12/12	110.2882	2.00	1/12
77.0386	11.69	5/12	115.0430	4.20	2/12
78.0464	34.27	10/12	115.0545	999.00	12/12
79.2907	2.00	1/12	115.9932	2.00	1/12
80.5368	2.00	1/12	116.0622	8.49	4/12
81.0335	13.09	6/12	116.2749	2.00	1/12
81.3809	2.00	1/12	118.1334	2.00	1/12
83.4835	3.30	2/12	129.0451	2.00	1/12
86.0151	15.98	7/12	134.7912	2.00	1/12

4-methylcinnamic acid [M+H]⁺ HCD

Peak Annotation – Peptide (for low and high resolution MS/MS spectra)

- p, y, b, a, internal fragments, neutral losses(-H₂O, -NH₃, -CO)
- y+10(CO-H₂O), a2-45(CONH₃)
- 52 immonium ions (e.g. IHA: C₆H₇N₃O + H CO --> C₅H₈N₃)

Peak Annotation - Small Molecule (for high resolution MS/MS spectra)

 Peaks were annotated with the most probable chemical formula consistent with the precursor formula

count of each element

formula valence<=# of H; H:C ratio>=0.125

Accuracy (ppm) =
$$\frac{|(\text{Observed m/z} - \text{Theoretical m/z})|}{\text{Observed m/z}} \times 10^{6}$$

10 ppm

Unassigned (%) =
$$\frac{\text{Sum of intensities of unassigned peaks}}{\text{Sum of intensities of all peaks}} \times 100$$

T. Kind and O. Fiehn, Seven Golden Rules for heuristic filtering of molecular formulas obtained by accurate mass spectrometry. *BMC Bioinformatics* 2007, 8:105 doi:10.1186/1471-2105-8-105

Peak Annotation - Small Molecule (for high resolution MS/MS spectra)

Article

pubs.acs.org/ac

Quality Control for Building Libraries from Electrospray Ionization Tandem Mass Spectra

Xiaoyu Yang,* Pedatsur Neta, and Stephen E. Stein

Mass Spectrometry Data Center, National Institute of Standards and Technology, Mail Stop 8362, Gaithersburg, Maryland 20899, United States

Supporting Information

ABSTRACT: Electrospray ionization (ESI) tandem mass spectrometry coupled with liquid chromatography is a routine technique for identifying and quantifying compounds in complex mixtures. The identification step can be aided by matching acquired tandem mass spectra (MS²) against reference library spectra as is routine for electron ionization (EI) spectra from gas chromatography/mass spectrometry (GC/MS). However, unlike the latter spectra, ESI MS² spectra are likely to originate from various precursor ions for a given target molecule and may be acquired at varying energies and resolutions and have characteristic noise signatures, requiring processing methods very different from EI to obtain complete and high quality reference spectra for individual analytes. This paper presents procedures developed for creating a tandem mass spectral library that addresses these

factors. Library building begins by acquiring MS² spectra for all major MS¹ peaks in an infusion run, followed by assigning MS² spectra to clusters and creating a consensus spectrum for each. Intensity-based constraints for cluster membership were developed, as well as peak testing to recognize and eliminate suspect peaks and reduce noise. Consensus spectra were then examined by a human evaluator using a number of criteria, including a fraction of annotated peaks and consistency of spectra for a given ion at different energies. These methods have been developed and used to build a library from >9000 compounds, yielding 230,000 spectra.

ass spectral reference libraries of electron ionization (EI) spectra are used extensively and routinely to identify compounds separated by gas chromatography. For example, the current NIST/EPA/NIH Mass Spectral EI Library contains spectra for over 200,000 compounds and is a common, tightly integrated component in many gas chromatography/mass spectrometry (GC/MS) data systems. Such use of reference libraries for the identification of electrospray ionization (ESI) tandem mass spectra (MS²) has, however, been far more limited. While certain MS² reference libraries are available for specific applications, such as METLIN⁴ for metabolomics, they are often limited to specific platforms or not integrated with an instrument data system. Also unlike EI libraries,

NIST has undertaken the production of a comprehensive ESI MS² library for a wide range of molecules, ^{11,12} intended for use on a variety of platforms and in a range of applications. Different methods are required for development of an ESI MS² library in comparison to those used for the odd-electron, positive ion, unit mass resolution MS¹ EI library. ESI MS² spectra are the result of even-electron transfer of ionic charge to neutral molecules in solutions at atmospheric pressure, frequently resulting in simple spectra with sparse fragmentation. The presence of multiple precursor ions and charge states for a single analyte is a necessary consequence of the ESI experiment in which protons or other cations or anions impart charge and

What Types of Mass Spectra are in the NIST MSMS Library?

Instruments:

Micromass Quattro Micro: Triple Quadrupole

Thermo Finnigan LTQ: IT/ion trap

Agilent QTOF 6530: Q-TOF

Thermo Finnigan Elite Orbitrap: HCD

IT-FT/ion trap with FTMS

IT/ion trap

Metabolites ~50%

Ureidosuccinic acid [M+H]+ HCD 14eV

Bioactive peptides ~10%

lifeExtension

All amino acids (20)
All dipeptides (400)
All tryptic tripeptides (800)

Sugars ~ **2**%

Surfactants and Contaminants

Pesticides

NIST Tandem Mass Spectral Library 2014

9,345 Compounds
45,298 Precursor Ions
234,284 Spectra
~90% Positive Ion Spectra
~10% Negative Ion Spectra

Instrument Type	Precursor lons
Ion Trap	>40,000
Collision Cell	
(QTOF, QQQ,	>14,000
HCD)	

Conclusions

- Two level clustering algorithms (counter-based and distance-based) were developed and provide a robust means of generating consensus spectra of multiple precursor types for the NIST Tandem Mass Spectral Library.
- Quality control programs such as peak annotation and noise removal methods were developed and are used in building the reference quality NIST Tandem Mass Spectral Library.
- NIST Tandem Mass Spectral Library 2014 can be applied in chemical identification in Metabolomics, Proteomics and other fields.

Plans for the future:

- Improve peak annotation program by using compound's structure and physical chemical properties.
- Develop more quality control methods to eliminate low quality spectra for the library.

Acknowledgements

